Я создаю дерево решений с помощью записной книжки JuPyter, и когда я начал создавать решение и помещать функции и целевой класс, jupyter выдает мне эту ошибку, обнаруженную в этой ячейке для дерева решений. dt = c.fit(X_train, y_train)
Это ошибка.
TypeError
Traceback (most recent call last)
<ipython-input-10-0f9186b7935c> in <module>()
----> 1 dt = c.fit(X_train, y_train)
~\Anaconda3\lib\site-packages\sklearn\tree\tree.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted)
788 sample_weight=sample_weight,
789 check_input=check_input,
--> 790 X_idx_sorted=X_idx_sorted)
791 return self
792
~\Anaconda3\lib\site-packages\sklearn\tree\tree.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted)
138
139 if is_classification:
--> 140 check_classification_targets(y)
141 y = np.copy(y)
142
~\Anaconda3\lib\site-packages\sklearn\utils\multiclass.py in check_classification_targets(y)
167 y : array-like
168 """
--> 169 y_type = type_of_target(y)
170 if y_type not in ['binary', 'multiclass', 'multiclass-multioutput',
171 'multilabel-indicator', 'multilabel-sequences']:
~\Anaconda3\lib\site-packages\sklearn\utils\multiclass.py in type_of_target(y)
286 return 'continuous' + suffix
287
--> 288 if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1):
289 return 'multiclass' + suffix # [1, 2, 3] or [[1., 2., 3]] or [[1, 2]]
290 else:
~\Anaconda3\lib\site-packages\numpy\lib\arraysetops.py in unique(ar, return_index, return_inverse, return_counts, axis)
221 ar = np.asanyarray(ar)
222 if axis is None:
--> 223 return _unique1d(ar, return_index, return_inverse, return_counts)
224 if not (-ar.ndim <= axis < ar.ndim):
225 raise ValueError('Invalid axis kwarg specified for unique')
~\Anaconda3\lib\site-packages\numpy\lib\arraysetops.py in _unique1d(ar, return_index, return_inverse, return_counts)
281 aux = ar[perm]
282 else:
--> 283 ar.sort()
284 aux = ar
285 flag = np.concatenate(([True], aux[1:] != aux[:-1]))
TypeError: '<' not supported between instances of 'str' and 'float'
Я запутался, потому что моя функция набора данных чистая, это все Int и целевой класс в единственном категориальном.
Может кто-нибудь сказать мне, что происходит и что делать, чтобы dt = c.fit(X_train, y_train)
сработало? c = DecisionTreeClassifier(min_samples_split=100)
c - классификатор дерева решений.
Это мой пример набора данных:
