Получить все отзывы от Amazon URL с указанным номером ASIN - PullRequest
0 голосов
/ 13 апреля 2019

Я приложил свой фрагмент кода Python, будучи программистом начального уровня.Прямо сейчас я могу получать отзывы с одной страницы с указанным ASIN, я хочу запустить цикл 24 раза, чтобы получить отзывы для каждого продукта, только один продукт имеет 236 отзывов (другие меньше).Здесь я запускаю код для получения обзоров продуктов для компании со всеми их списками продуктов на Amazon.

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Written as part of https://www.scrapehero.com/how-to-scrape-amazon-product-reviews-using-python/
from lxml import html
from json import dump,loads
from requests import get
import json
from re import sub
from dateutil import parser as dateparser
from time import sleep

def ParseReviews(asin):

    # This script has only been tested with Amazon.com
    amazon_url  = 'https://www.amazon.com/product-reviews/'+asin+'/ref=cm_cr_arp_d_paging_btm_next_1?ie=UTF8&pageNumber=1&reviewerType=all_reviews'
    # Add some recent user agent to prevent amazon from blocking the request 
    # Find some chrome user agent strings  here https://udger.com/resources/ua-list/browser-detail?browser=Chrome
    headers = {'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36'}
    for i in range(5):
        response = get(amazon_url, headers = headers, verify=False, timeout=30)
        if response.status_code == 404:
            return {"url": amazon_url, "error": "page not found"}
        if response.status_code != 200:
            continue

        # Removing the null bytes from the response.
        cleaned_response = response.text.replace('\x00', '')

        parser = html.fromstring(cleaned_response)
        XPATH_AGGREGATE = '//span[@id="acrCustomerReviewText"]'
        XPATH_REVIEW_SECTION_1 = '//div[contains(@id,"reviews-summary")]'
        XPATH_REVIEW_SECTION_2 = '//div[@data-hook="review"]'
        XPATH_AGGREGATE_RATING = '//table[@id="histogramTable"]//tr'
        XPATH_PRODUCT_NAME = '//h1//span[@id="productTitle"]//text()'
        XPATH_PRODUCT_PRICE = '//span[@id="priceblock_ourprice"]/text()'

        raw_product_price = parser.xpath(XPATH_PRODUCT_PRICE)
        raw_product_name = parser.xpath(XPATH_PRODUCT_NAME)
        total_ratings  = parser.xpath(XPATH_AGGREGATE_RATING)
        reviews = parser.xpath(XPATH_REVIEW_SECTION_1)

        product_price = ''.join(raw_product_price).replace(',', '')
        product_name = ''.join(raw_product_name).strip()

        if not reviews:
            reviews = parser.xpath(XPATH_REVIEW_SECTION_2)
        ratings_dict = {}
        reviews_list = []

        # Grabing the rating  section in product page
        for ratings in total_ratings:
            extracted_rating = ratings.xpath('./td//a//text()')
            if extracted_rating:
                rating_key = extracted_rating[0] 
                raw_raing_value = extracted_rating[1]
                rating_value = raw_raing_value
                if rating_key:
                    ratings_dict.update({rating_key: rating_value})

        # Parsing individual reviews
        for review in reviews:
            XPATH_RATING  = './/i[@data-hook="review-star-rating"]//text()'
            XPATH_REVIEW_HEADER = './/a[@data-hook="review-title"]//text()'
            XPATH_REVIEW_POSTED_DATE = './/span[@data-hook="review-date"]//text()'
            XPATH_REVIEW_TEXT_1 = './/span[@data-hook="review-body"]//text()'
            XPATH_REVIEW_TEXT_2 = './/div//span[@data-action="columnbalancing-showfullreview"]/@data-columnbalancing-showfullreview'
            XPATH_REVIEW_COMMENTS = './/span[@data-hook="review-comment"]//text()'
            XPATH_AUTHOR = './/span[contains(@class,"profile-name")]//text()'
            XPATH_REVIEW_TEXT_3 = './/div[contains(@id,"dpReviews")]/div/text()'

            raw_review_author = review.xpath(XPATH_AUTHOR)
            raw_review_rating = review.xpath(XPATH_RATING)
            raw_review_header = review.xpath(XPATH_REVIEW_HEADER)
            raw_review_posted_date = review.xpath(XPATH_REVIEW_POSTED_DATE)
            raw_review_text1 = review.xpath(XPATH_REVIEW_TEXT_1)
            raw_review_text2 = review.xpath(XPATH_REVIEW_TEXT_2)
            raw_review_text3 = review.xpath(XPATH_REVIEW_TEXT_3)

            # Cleaning data
            author = ' '.join(' '.join(raw_review_author).split())
            review_rating = ''.join(raw_review_rating).replace('out of 5 stars', '')
            review_header = ' '.join(' '.join(raw_review_header).split())

            try:
                review_posted_date = dateparser.parse(''.join(raw_review_posted_date)).strftime('%d %b %Y')
            except:
                review_posted_date = None
            review_text = ' '.join(' '.join(raw_review_text1).split())

            # Grabbing hidden comments if present
            if raw_review_text2:
                json_loaded_review_data = loads(raw_review_text2[0])
                json_loaded_review_data_text = json_loaded_review_data['rest']
                cleaned_json_loaded_review_data_text = re.sub('<.*?>', '', json_loaded_review_data_text)
                full_review_text = review_text+cleaned_json_loaded_review_data_text
            else:
                full_review_text = review_text
            if not raw_review_text1:
                full_review_text = ' '.join(' '.join(raw_review_text3).split())

            raw_review_comments = review.xpath(XPATH_REVIEW_COMMENTS)
            review_comments = ''.join(raw_review_comments)
            review_comments = sub('[A-Za-z]', '', review_comments).strip()
            review_dict = {
                                'review_comment_count': review_comments,
                                'review_text': full_review_text,
                                'review_posted_date': review_posted_date,
                                'review_header': review_header,
                                'review_rating': review_rating,
                                'review_author': author

                            }
            reviews_list.append(review_dict)

        data = {
                    'ratings': ratings_dict,
                    'reviews': reviews_list,
                    'url': amazon_url,
                    'name': product_name,
                    'price': product_price

                }
        return data

    return {"error": "failed to process the page", "url": amazon_url}


def ReadAsin():
    # Add your own ASINs here
    AsinList = ['B004F9LF7E']
    extracted_data = []

    for asin in AsinList:
        print("Downloading and processing page http://www.amazon.com/dp/" + asin)
        extracted_data.append(ParseReviews(asin))
        sleep(5)
    f = open('data.json', 'w')
    dump(extracted_data, f, indent=4)
    f.close()

if __name__ == '__main__':
    ReadAsin()

Ниже приведен URL-адрес, который будет запускаться с другим номером каждый раз, чтобы перейти к следующемустраница:

amazon_url = 'https://www.amazon.com/productreviews/'+asin+'/ref=cm_cr_arp_d_paging_btm_next_1?ie=UTF8&pageNumber=1&reviewerType=all_reviews'

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...