Постановка проблемы ниже,
У нас есть большой файл журнала, в котором хранятся взаимодействия пользователя с приложением. Записи в файле журнала следуют следующей схеме: {userId, timestamp, actionType}, где actionType - одно из двух возможных значений: [open, close]
Ограничения:
- Файл журнала слишком большой, чтобы поместиться в памяти на одном компьютере. Также предположим, что агрегированные данные не помещаются в память.
- Код должен работать на одной машине.
- Не следует использовать готовую реализацию mapreduce или сторонней базы данных; не думайте, что у нас есть Hadoop, Spark или другая распределенная вычислительная среда.
- Может быть несколько записей каждого actionType для каждого пользователя, и в файле журнала могут отсутствовать записи. Таким образом, пользователь может пропустить закрытую запись между двумя открытыми записями или наоборот.
- Метки времени будут приходить в строго возрастающем порядке.
Для этой проблемы нам нужно реализовать класс / классы, который вычисляет среднее время, затрачиваемое каждым пользователем между открытием и закрытием. Имейте в виду, что для некоторых пользователей отсутствуют записи, поэтому нам придется выбирать, как обрабатывать эти записи при выполнении наших расчетов. Кодекс должен следовать последовательной политике в отношении того, как мы делаем этот выбор.
Желаемым выводом для решения должно быть [{userId, timeSpent},….] Для всех пользователей в файле журнала.
Пример файла журнала (через запятую, текстовый файл)
1,1435456566,open
2,1435457643,open
3,1435458912,open
1,1435459567,close
4,1435460345,open
1,1435461234,open
2,1435462567,close
1,1435463456,open
3,1435464398,close
4,1435465122,close
1,1435466775,close
подход
Ниже приведен код, написанный мною на Python & Scala, который, по-видимому, неэффективен и соответствует ожиданиям данного сценария. Я хотел бы высказать мнение сообщества разработчиков на этом форуме, как лучше мы могли бы оптимизировать это код по заданному сценарию.
Реализация Scala
import java.io.FileInputStream
import java.util.{Scanner, Map, LinkedList}
import java.lang.Long
import scala.collection.mutable
object UserMetrics extends App {
if (args.length == 0) {
println("Please provide input data file name for processing")
}
val userMetrics = new UserMetrics()
userMetrics.readInputFile(args(0),if (args.length == 1) 600000 else args(1).toInt)
}
case class UserInfo(userId: Integer, prevTimeStamp: Long, prevStatus: String, timeSpent: Long, occurence: Integer)
class UserMetrics {
val usermap = mutable.Map[Integer, LinkedList[UserInfo]]()
def readInputFile(stArr:String, timeOut: Int) {
var inputStream: FileInputStream = null
var sc: Scanner = null
try {
inputStream = new FileInputStream(stArr);
sc = new Scanner(inputStream, "UTF-8");
while (sc.hasNextLine()) {
val line: String = sc.nextLine();
processInput(line, timeOut)
}
for ((key: Integer, userLs: LinkedList[UserInfo]) <- usermap) {
val userInfo:UserInfo = userLs.get(0)
val timespent = if (userInfo.occurence>0) userInfo.timeSpent/userInfo.occurence else 0
println("{" + key +","+timespent + "}")
}
if (sc.ioException() != null) {
throw sc.ioException();
}
} finally {
if (inputStream != null) {
inputStream.close();
}
if (sc != null) {
sc.close();
}
}
}
def processInput(line: String, timeOut: Int) {
val strSp = line.split(",")
val userId: Integer = Integer.parseInt(strSp(0))
val curTimeStamp = Long.parseLong(strSp(1))
val status = strSp(2)
val uInfo: UserInfo = UserInfo(userId, curTimeStamp, status, 0, 0)
val emptyUserInfo: LinkedList[UserInfo] = new LinkedList[UserInfo]()
val lsUserInfo: LinkedList[UserInfo] = usermap.getOrElse(userId, emptyUserInfo)
if (lsUserInfo != null && lsUserInfo.size() > 0) {
val lastUserInfo: UserInfo = lsUserInfo.get(lsUserInfo.size() - 1)
val prevTimeStamp: Long = lastUserInfo.prevTimeStamp
val prevStatus: String = lastUserInfo.prevStatus
if (prevStatus.equals("open")) {
if (status.equals(lastUserInfo.prevStatus)) {
val timeSelector = if ((curTimeStamp - prevTimeStamp) > timeOut) timeOut else curTimeStamp - prevTimeStamp
val timeDiff = lastUserInfo.timeSpent + timeSelector
lsUserInfo.remove()
lsUserInfo.add(UserInfo(userId, curTimeStamp, status, timeDiff, lastUserInfo.occurence + 1))
} else if(!status.equals(lastUserInfo.prevStatus)){
val timeDiff = lastUserInfo.timeSpent + curTimeStamp - prevTimeStamp
lsUserInfo.remove()
lsUserInfo.add(UserInfo(userId, curTimeStamp, status, timeDiff, lastUserInfo.occurence + 1))
}
} else if(prevStatus.equals("close")) {
if (status.equals(lastUserInfo.prevStatus)) {
lsUserInfo.remove()
val timeSelector = if ((curTimeStamp - prevTimeStamp) > timeOut) timeOut else curTimeStamp - prevTimeStamp
lsUserInfo.add(UserInfo(userId, curTimeStamp, status, lastUserInfo.timeSpent + timeSelector, lastUserInfo.occurence+1))
}else if(!status.equals(lastUserInfo.prevStatus))
{
lsUserInfo.remove()
lsUserInfo.add(UserInfo(userId, curTimeStamp, status, lastUserInfo.timeSpent, lastUserInfo.occurence))
}
}
}else if(lsUserInfo.size()==0){
lsUserInfo.add(uInfo)
}
usermap.put(userId, lsUserInfo)
}
}
Реализация Python
import sys
def fileBlockStream(fp, number_of_blocks, block):
#A generator that splits a file into blocks and iterates over the lines of one of the blocks.
assert 0 <= block and block < number_of_blocks #Assertions to validate number of blocks given
assert 0 < number_of_blocks
fp.seek(0,2) #seek to end of file to compute block size
file_size = fp.tell()
ini = file_size * block / number_of_blocks #compute start & end point of file block
end = file_size * (1 + block) / number_of_blocks
if ini <= 0:
fp.seek(0)
else:
fp.seek(ini-1)
fp.readline()
while fp.tell() < end:
yield fp.readline() #iterate over lines of the particular chunk or block
def computeResultDS(chunk,avgTimeSpentDict,defaultTimeOut):
countPos,totTmPos,openTmPos,closeTmPos,nextEventPos = 0,1,2,3,4
for rows in chunk.splitlines():
if len(rows.split(",")) != 3:
continue
userKeyID = rows.split(",")[0]
try:
curTimeStamp = int(rows.split(",")[1])
except ValueError:
print("Invalid Timestamp for ID:" + str(userKeyID))
continue
curEvent = rows.split(",")[2]
if userKeyID in avgTimeSpentDict.keys() and avgTimeSpentDict[userKeyID][nextEventPos]==1 and curEvent == "close":
#Check if already existing userID with expected Close event 0 - Open; 1 - Close
#Array value within dictionary stores [No. of pair events, total time spent (Close tm-Open tm), Last Open Tm, Last Close Tm, Next expected Event]
curTotalTime = curTimeStamp - avgTimeSpentDict[userKeyID][openTmPos]
totalTime = curTotalTime + avgTimeSpentDict[userKeyID][totTmPos]
eventCount = avgTimeSpentDict[userKeyID][countPos] + 1
avgTimeSpentDict[userKeyID][countPos] = eventCount
avgTimeSpentDict[userKeyID][totTmPos] = totalTime
avgTimeSpentDict[userKeyID][closeTmPos] = curTimeStamp
avgTimeSpentDict[userKeyID][nextEventPos] = 0 #Change next expected event to Open
elif userKeyID in avgTimeSpentDict.keys() and avgTimeSpentDict[userKeyID][nextEventPos]==0 and curEvent == "open":
avgTimeSpentDict[userKeyID][openTmPos] = curTimeStamp
avgTimeSpentDict[userKeyID][nextEventPos] = 1 #Change next expected event to Close
elif userKeyID in avgTimeSpentDict.keys() and avgTimeSpentDict[userKeyID][nextEventPos]==1 and curEvent == "open":
curTotalTime,closeTime = missingHandler(defaultTimeOut,avgTimeSpentDict[userKeyID][openTmPos],curTimeStamp)
totalTime = curTotalTime + avgTimeSpentDict[userKeyID][totTmPos]
avgTimeSpentDict[userKeyID][totTmPos]=totalTime
avgTimeSpentDict[userKeyID][closeTmPos]=closeTime
avgTimeSpentDict[userKeyID][openTmPos]=curTimeStamp
eventCount = avgTimeSpentDict[userKeyID][countPos] + 1
avgTimeSpentDict[userKeyID][countPos] = eventCount
elif userKeyID in avgTimeSpentDict.keys() and avgTimeSpentDict[userKeyID][nextEventPos]==0 and curEvent == "close":
curTotalTime,openTime = missingHandler(defaultTimeOut,avgTimeSpentDict[userKeyID][closeTmPos],curTimeStamp)
totalTime = curTotalTime + avgTimeSpentDict[userKeyID][totTmPos]
avgTimeSpentDict[userKeyID][totTmPos]=totalTime
avgTimeSpentDict[userKeyID][openTmPos]=openTime
eventCount = avgTimeSpentDict[userKeyID][countPos] + 1
avgTimeSpentDict[userKeyID][countPos] = eventCount
elif curEvent == "open":
#Initialize userid with Open event
avgTimeSpentDict[userKeyID] = [0,0,curTimeStamp,0,1]
elif curEvent == "close":
#Initialize userid with missing handler function since there is no Open event for this User
totaltime,OpenTime = missingHandler(defaultTimeOut,0,curTimeStamp)
avgTimeSpentDict[userKeyID] = [1,totaltime,OpenTime,curTimeStamp,0]
def missingHandler(defaultTimeOut,curTimeVal,lastTimeVal):
if lastTimeVal - curTimeVal > defaultTimeOut:
return defaultTimeOut,curTimeVal
else:
return lastTimeVal - curTimeVal,curTimeVal
def computeAvg(avgTimeSpentDict,defaultTimeOut):
resDict = {}
for k,v in avgTimeSpentDict.iteritems():
if v[0] == 0:
resDict[k] = 0
else:
resDict[k] = v[1]/v[0]
return resDict
if __name__ == "__main__":
avgTimeSpentDict = {}
if len(sys.argv) < 2:
print("Please provide input data file name for processing")
sys.exit(1)
fileObj = open(sys.argv[1])
number_of_chunks = 4 if len(sys.argv) < 3 else int(sys.argv[2])
defaultTimeOut = 60000 if len(sys.argv) < 4 else int(sys.argv[3])
for chunk_number in range(number_of_chunks):
for chunk in fileBlockStream(fileObj, number_of_chunks, chunk_number):
computeResultDS(chunk, avgTimeSpentDict, defaultTimeOut)
print (computeAvg(avgTimeSpentDict,defaultTimeOut))
avgTimeSpentDict.clear() #Nullify dictionary
fileObj.close #Close the file object
Обе программы выше дают желаемый результат, но эффективность - это то, что имеет значение для этого конкретного сценария. Дайте мне знать, если у вас есть что-нибудь лучше или какие-либо предложения по существующей реализации.
Заранее спасибо !!