Я экспериментирую с API обнаружения объектов TensorFlow для переобучения (передачи обучения) MobileNetSSD (глубина 0,75) из COCO14 в 1 класс (человек).Я ищу помощь в указании того, какие параметры являются наиболее важными для классификации.
У меня схожие результаты с разными оптимизаторами (RMSProp, Adam) и плато попадания для Адама с шагом 320k / 500k.Кроме того, я думал, что Адам настраивает скорость обучения автоматически, но из графика total_loss ясно видно, что мое ручное уменьшение помогает в процессе обучения.
Мои недавние результаты с Адамом выглядят так:
Что дает mAP
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.273
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.501
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.261
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.037
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.349
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.652
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.145
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.330
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.391
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.138
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.522
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.753
Конфигурация:
optimizer {
adam_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.001
schedule {
step: 100000
learning_rate: 0.0005
}
schedule {
step: 200000
learning_rate: 0.0002
}
schedule {
step: 300000
learning_rate: 0.0001
}
}
}
}
use_moving_average: false
}
Эти результаты очень похожи на мои эксперименты с RmsProp (200k шагов):
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.259
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.483
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.245
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.031
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.326
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.645
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.142
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.317
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.379
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.127
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.508
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.743
Конфигурация:
optimizer {
rms_prop_optimizer {
learning_rate {
exponential_decay_learning_rate {
initial_learning_rate: 0.004000000189989805
decay_steps: 20000
decay_factor: 0.949999988079071
}
}
momentum_optimizer_value: 0.8999999761581421
decay: 0.8999999761581421
epsilon: 1.0
}
use_moving_average: false
}
У меня были совершенно неверные результаты для оптимизатора Cosine (общие потери увеличивались).
Кажется, чтоЯ должен попытаться настроить некоторые параметры сети, но , которые являются наиболее значимыми ?
Ниже приведена вся моя конфигурация.В наборе данных имеется 64115 обучающих и 2693 проверочных примеров (без аннотаций толпы).
model {
ssd {
num_classes: 1
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: "ssd_mobilenet_v1"
depth_multiplier: 0.75
min_depth: 16
conv_hyperparams {
regularizer {
l2_regularizer {
weight: 3.99999989895e-05
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294
}
}
activation: RELU_6
batch_norm {
decay: 0.97000002861
center: true
scale: true
epsilon: 0.0010000000475
train: true
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config {
batch_size: 24
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
optimizer {
adam_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.001
schedule {
step: 100000
learning_rate: 0.0005
}
schedule {
step: 200000
learning_rate: 0.0002
}
schedule {
step: 300000
learning_rate: 0.0001
}
}
}
}
use_moving_average: false
}
fine_tune_checkpoint: "/home/tobiasz/Projects/tf-retrain-ssd/training_assets/pretrained_model/model.ckpt"
from_detection_checkpoint: true
load_all_detection_checkpoint_vars: false
num_steps:500000
}
train_input_reader {
label_map_path: "classes.pbtxt"
tf_record_input_reader {
input_path: "/coco_train_300.record"
}
}
eval_config {
num_examples: 2693
metrics_set: "coco_detection_metrics"
use_moving_averages: false
num_visualizations: 20
}
eval_input_reader {
label_map_path: "classes.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader {
input_path: "coco_val_300.record"
}
}
Кстати, я начал читать статьи по MobileNet и SSD, но ваше мнение мне очень поможет.