Хорошо, у меня ушло немного времени, но я все понял. Большое спасибо Эмме Гримальди за Medium и Винсу Поте . Их посты были тем, что помогло мне в большинстве случаев.
Так что вот ответы на мой вопрос по порядку:
- Нет необходимости создавать отдельный файл для каждого региона. То есть Вы можете использовать pandas dataframe для сопоставления названий регионов в json, и это будет прекрасно работать.
with open('indonesia-en.geojson') as f:
geojson = json.load(f)
def make_sources(downsample = 0):
sources = []
geojson_copy = copy.deepcopy(geojson['features']) # do not overwrite the original file
for feature in geojson_copy:
if downsample > 0:
coords = np.array(feature['geometry']['coordinates'][0][0])
coords = coords[::downsample]
feature['geometry']['coordinates'] = [[coords]]
sources.append(dict(type = 'FeatureCollection',
features = [feature])
)
return sources
То есть вы просто извлекаете координаты из геойсона и добавляете их в список диктов [{}]
.
- Как использовать этот список для динамического создания слоев:
MAPBOX_APIKEY = "Your API Key"
data = dict(type='scattermapbox',
lat=lats,
lon=lons,
mode='markers',
text=hover_text,
marker=dict(size=1,
color=scatter_colors,
showscale = True,
cmin = minpop/1000000,
cmax = maxpop/1000000,
colorscale = colorscale,
colorbar = dict(
title='Population in Millions'
)
),
showlegend=False,
hoverinfo='text'
)
layers=([dict(sourcetype = 'geojson',
source =sources[k],
below="water",
type = 'line', # the borders
line = dict(width = 1),
color = 'black',
) for k in range(n_provinces) # where n_provinces = len(geojson['features'])
] +
[dict(sourcetype = 'geojson',
source =sources[k],
type = 'fill', # the area inside the borders
color = scatter_colors[k],
opacity=0.8
) for k in range(n_provinces) # where n_provinces = len(geojson['features'])
]
)
Таким образом, решение здесь слишком установлено sources = sources[k]
Т.е. список с указанием значений широты и долготы, созданный в make_sources()
- Как соответствующим образом раскрасить слои
color=scatter_colors[k]
Используя связанный пример, я использовал 3 функции
3,1 scalarmappable
#sets colors based on min and max values
def scalarmappable(cmap, cmin, cmax):
colormap = cm.get_cmap(cmap)
norm = Normalize(vmin=cmin, vmax=cmax+(cmax*0.10)) #vmax get's increased 10 percent because otherwise the most populous region doesnt get colored
return cm.ScalarMappable(norm=norm, cmap=colormap)
3,2 scatter_colors
#uses matplotlib to create colors based on values and sets grey for isnan value
def get_scatter_colors(sm, df):
grey = 'rgba(128,128,128,1)'
return ['rgba' + str(sm.to_rgba(m, bytes = True, alpha = 1)) if not np.isnan(m) else grey for m in df]
3,3 colorscale
#defines horizontal range and corresponding values for colorscale
def get_colorscale(sm, df, cmin, cmax):
xrange = np.linspace(0, 1, len(df))
values = np.linspace(cmin, cmax, len(df))
return [[i, 'rgba' + str(sm.to_rgba(v, bytes = True))] for i,v in zip(xrange, values) ]
Затем устанавливаются переменные с использованием функций
#assigning values
colormap = 'nipy_spectral'
minpop = stats['population'].min()
maxpop = stats['population'].max()
sources = make_sources(downsample=0)
lons, lats = get_centers()
sm = scalarmappable(colormap, minpop, maxpop)
scatter_colors = get_scatter_colors(sm, stats['population'])
colorscale = get_colorscale(sm, stats, minpop, maxpop)
hover_text = get_hover_text(stats['population'])
Так что, если у кого-то возникли проблемы с этим ответом, он может помочь вам прогрессировать:)