У меня есть данные о количестве осадков (1800 строк и 15 тыс. Столбцов) для каждой ячейки и даты.
486335 486336 486337
2019-07-03 13:35:54.445 0 2 22
2019-07-04 13:35:54.445 0 1 1
2019-07-05 13:35:54.445 16 8 22
2019-07-06 13:35:54.445 0 0 0
2019-07-07 13:35:54.445 0 11 0
Я хочу найти даты, когда было достигнуто определенное количество осадков (> 15 мм), и подсчитать днипосле этого события было меньше осадков (<1,1 мм).Вместе с количеством дождя, начальным и конечным периодом, ячейкой и другой информацией, хранящейся в новом кадре данных.</p>
Я пишу цикл for, который выполняет эту работу, но на его завершение ушло несколько дней; (. Я новичок в python, поэтому, возможно, есть несколько советов для других методов.
from datetime import datetime, timedelta, date
import datetime
import pandas as pd
#Existing Data
index_dates = pd.date_range(pd.datetime.today(), periods=10).tolist()
df = pd.DataFrame({'486335':[0,0,16,0,0,0,2,1,8,2],'486336':[2,1,8,0,11,16,0,1,6,8],'486337':[22,1,22,0,0,0,5,3,6,1]},index=index_dates)
columns = df.columns
counter_columns = 0
iteration = -1 #Iterations Steps
counter = 10 #10 precipitation values per column
duration = 0 #days with no or less than pp_max_1 rain
count = False
index_list = df.index #Index for updating df / Integear
period_range = 0 #Amount of days after Event without much rain Integear
period_amount = 0 #Amount of PP in dry days except event Integear
event_amount = 0.0 #Amount of heavy rainfall on the event date Float
pp = 0 #actual precipitation
pp_sum = 0.0 #mm
pp_min = 15.0 #mm min pp for start to count dry days until duration_min_after
pp_max_1 = 0.11 #max pp for 1 day while counting dry days
dry_days = 0 #dry days after event
for x in df:
for y in df[x]:
iteration = iteration + 1
if iteration == counter:
iteration = 0
counter_columns = counter_columns + 1
print("column :",counter_columns, "finished")
if y >= pp_min and count == False:
duration = duration + 1
count = True
start_period = index_list[iteration]
event_amount = y
index = iteration
pp_sum = pp_sum + y
elif y >= pp_min and count == True or y >= pp_max_1 and count == True:
end_period = index_list[iteration]
dry_periods = dry_periods.append({"start_period":start_period ,"end_period":end_period,"period_range":duration,"period_amount":pp_sum ,"event_amount":event_amount, "cell":columns[counter_columns]},ignore_index=True).sort_values('period_range',ascending=False)
duration = 0
count = False
pp_sum = 0
elif pp <= pp_max_1 and count == True:
duration = duration + 1
pp_sum = pp_sum + y
else:
continue
print(dry_periods)
Вывод выглядит так
start_period end_period period_range \
0 2019-07-05 13:15:05.545 2019-07-09 13:15:05.545 4
1 2019-07-05 13:15:05.545 2019-07-09 13:15:05.545 4
2 2019-07-05 13:15:36.569 2019-07-09 13:15:36.569 4
3 2019-07-05 13:15:36.569 2019-07-09 13:15:36.569 4
4 2019-07-05 13:16:16.372 2019-07-09 13:16:16.372 4
5 2019-07-05 13:16:16.372 2019-07-09 13:16:16.372 4
period_amount event_amount cell
0 16.0 16 486335
1 22.0 22 486337
2 16.0 16 486335
3 22.0 22 486337
4 16.0 16 486335
5 22.0 22 486337