Я работаю над (как мне кажется,) прямой проблемой двоичной классификации.Я получаю этот любопытный результат от моего поиска по сетке параметров, что независимо от того, какие параметры у модели, она всегда возвращает f1-оценку ~ 0,75.Я не уверен, что это: а) отражает то, что я неправильно понимаю в отношении показателя f1 как метрики; б) связано с некоторой проблемой с данными или моделью (я использую XGBoost), которую необходимо исправить, илив) просто показывает, что параметры модели в основном не имеют значения, и показатель f1 ~ 0,75 настолько хорош, насколько я получу.
Еще более запутанно, я получил этот же результат для двух совершенно разных наборов предикторов длята же самая проблема (например, если я предсказывал стоимость недвижимости, один набор использовал цены соседства, а другой набор использовал характеристики дома - различные наборы предикторов для той же самой проблемы).Для одного набора диапазон составлял примерно 0,67–0,82 с приблизительно нормальной дисперсией, а для второго набора (показанного ниже) каждый набор параметров давал практически одинаковую оценку f1, равную 0,7477.
Чтобы дать более подробную информациютекущий набор данных содержит около 30 000 примеров, один класс составляет около 60% примеров (другой - 40%).Я еще не углубился в этот новый набор данных, но с предыдущим набором данных, когда я исследовал одну модель более тщательно, я нашел разумную точность и значения отзыва, которые несколько изменились с различными наборами параметров, что разрушило мое беспокойство, что модель былапросто угадываю более распространенный класс.
Я использую XGBoost, и использую scikit-learn's GridSearchCV
.Пропуск импорта и т. Д. Код поиска по сетке:
grid_values = {'n_estimators':[50,100,200,500,1000],'max_depth':[1,3,5,8], 'min_child_weight':range(1,6,2)}
clf=XGBClassifier()
grid_clf=GridSearchCV(clf,param_grid=grid_values,scoring='f1',verbose=10)
grid_clf.fit(game_records,hora)
print('Grid best score (f1): ', grid_clf.best_score_)
print('Grid best parameter (max. f1): ', grid_clf.best_params_)
Полный вывод на https://pastebin.com/NSB0yaNi, с показанной здесь частью (большей частью):
Fitting 3 folds for each of 60 candidates, totalling 180 fits
[CV] max_depth=1, min_child_weight=1, n_estimators=50 ................
[CV] max_depth=1, min_child_weight=1, n_estimators=50, score=0.7477603583426652, total= 11.1s
[CV] max_depth=1, min_child_weight=1, n_estimators=50 ................
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 11.4s remaining: 0.0s
[CV] max_depth=1, min_child_weight=1, n_estimators=50, score=0.74772504549909, total= 11.3s
[CV] max_depth=1, min_child_weight=1, n_estimators=50 ................
[Parallel(n_jobs=1)]: Done 2 out of 2 | elapsed: 23.1s remaining: 0.0s
[CV] max_depth=1, min_child_weight=1, n_estimators=50, score=0.7477773888694436, total= 11.2s
[CV] max_depth=1, min_child_weight=1, n_estimators=100 ...............
[Parallel(n_jobs=1)]: Done 3 out of 3 | elapsed: 34.8s remaining: 0.0s
[CV] max_depth=1, min_child_weight=1, n_estimators=100, score=0.7477603583426652, total= 21.4s
[CV] max_depth=1, min_child_weight=1, n_estimators=100 ...............
[Parallel(n_jobs=1)]: Done 4 out of 4 | elapsed: 56.8s remaining: 0.0s
[CV] max_depth=1, min_child_weight=1, n_estimators=100, score=0.74772504549909, total= 21.3s
[CV] max_depth=1, min_child_weight=1, n_estimators=100 ...............
[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.3min remaining: 0.0s
[CV] max_depth=1, min_child_weight=1, n_estimators=100, score=0.7477773888694436, total= 21.0s
[CV] max_depth=1, min_child_weight=1, n_estimators=200 ...............
[Parallel(n_jobs=1)]: Done 6 out of 6 | elapsed: 1.7min remaining: 0.0s
[CV] max_depth=1, min_child_weight=1, n_estimators=200, score=0.7477603583426652, total= 41.3s
[CV] max_depth=1, min_child_weight=1, n_estimators=200 ...............
[Parallel(n_jobs=1)]: Done 7 out of 7 | elapsed: 2.4min remaining: 0.0s
[CV] max_depth=1, min_child_weight=1, n_estimators=200, score=0.74772504549909, total= 41.1s
[CV] max_depth=1, min_child_weight=1, n_estimators=200 ...............
[Parallel(n_jobs=1)]: Done 8 out of 8 | elapsed: 3.1min remaining: 0.0s
[CV] max_depth=1, min_child_weight=1, n_estimators=200, score=0.7477773888694436, total= 41.1s
[CV] max_depth=1, min_child_weight=1, n_estimators=500 ...............
[Parallel(n_jobs=1)]: Done 9 out of 9 | elapsed: 3.7min remaining: 0.0s
[CV] max_depth=1, min_child_weight=1, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=1, min_child_weight=1, n_estimators=500 ...............
[CV] max_depth=1, min_child_weight=1, n_estimators=500, score=0.74772504549909, total= 1.8min
[CV] max_depth=1, min_child_weight=1, n_estimators=500 ...............
[CV] max_depth=1, min_child_weight=1, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=1, min_child_weight=1, n_estimators=1000 ..............
[CV] max_depth=1, min_child_weight=1, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=1, min_child_weight=1, n_estimators=1000 ..............
[CV] max_depth=1, min_child_weight=1, n_estimators=1000, score=0.74772504549909, total= 3.4min
...
[CV] max_depth=3, min_child_weight=1, n_estimators=50 ................
[CV] max_depth=3, min_child_weight=1, n_estimators=50, score=0.7477773888694436, total= 10.9s
[CV] max_depth=3, min_child_weight=1, n_estimators=100 ...............
[CV] max_depth=3, min_child_weight=1, n_estimators=100, score=0.7477603583426652, total= 21.2s
[CV] max_depth=3, min_child_weight=1, n_estimators=100 ...............
[CV] max_depth=3, min_child_weight=1, n_estimators=100, score=0.74772504549909, total= 21.0s
[CV] max_depth=3, min_child_weight=1, n_estimators=100 ...............
[CV] max_depth=3, min_child_weight=1, n_estimators=100, score=0.7477773888694436, total= 20.9s
[CV] max_depth=3, min_child_weight=1, n_estimators=200 ...............
[CV] max_depth=3, min_child_weight=1, n_estimators=200, score=0.7477603583426652, total= 41.0s
[CV] max_depth=3, min_child_weight=1, n_estimators=200 ...............
[CV] max_depth=3, min_child_weight=1, n_estimators=200, score=0.74772504549909, total= 41.2s
[CV] max_depth=3, min_child_weight=1, n_estimators=200 ...............
[CV] max_depth=3, min_child_weight=1, n_estimators=200, score=0.7477773888694436, total= 41.4s
[CV] max_depth=3, min_child_weight=1, n_estimators=500 ...............
[CV] max_depth=3, min_child_weight=1, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=3, min_child_weight=1, n_estimators=500 ...............
[CV] max_depth=3, min_child_weight=1, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=3, min_child_weight=1, n_estimators=500 ...............
[CV] max_depth=3, min_child_weight=1, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=3, min_child_weight=1, n_estimators=1000 ..............
[CV] max_depth=3, min_child_weight=1, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=3, min_child_weight=1, n_estimators=1000 ..............
[CV] max_depth=3, min_child_weight=1, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=3, min_child_weight=1, n_estimators=1000 ..............
[CV] max_depth=3, min_child_weight=1, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=3, min_child_weight=3, n_estimators=50 ................
[CV] max_depth=3, min_child_weight=3, n_estimators=50, score=0.7477603583426652, total= 10.9s
[CV] max_depth=3, min_child_weight=3, n_estimators=50 ................
[CV] max_depth=3, min_child_weight=3, n_estimators=50, score=0.74772504549909, total= 11.0s
[CV] max_depth=3, min_child_weight=3, n_estimators=50 ................
[CV] max_depth=3, min_child_weight=3, n_estimators=50, score=0.7477773888694436, total= 10.9s
[CV] max_depth=3, min_child_weight=3, n_estimators=100 ...............
[CV] max_depth=3, min_child_weight=3, n_estimators=100, score=0.7477603583426652, total= 20.9s
[CV] max_depth=3, min_child_weight=3, n_estimators=100 ...............
[CV] max_depth=3, min_child_weight=3, n_estimators=100, score=0.74772504549909, total= 21.0s
[CV] max_depth=3, min_child_weight=3, n_estimators=100 ...............
[CV] max_depth=3, min_child_weight=3, n_estimators=100, score=0.7477773888694436, total= 21.0s
[CV] max_depth=3, min_child_weight=3, n_estimators=200 ...............
[CV] max_depth=3, min_child_weight=3, n_estimators=200, score=0.7477603583426652, total= 41.2s
[CV] max_depth=3, min_child_weight=3, n_estimators=200 ...............
[CV] max_depth=3, min_child_weight=3, n_estimators=200, score=0.74772504549909, total= 41.2s
[CV] max_depth=3, min_child_weight=3, n_estimators=200 ...............
[CV] max_depth=3, min_child_weight=3, n_estimators=200, score=0.7477773888694436, total= 41.2s
[CV] max_depth=3, min_child_weight=3, n_estimators=500 ...............
[CV] max_depth=3, min_child_weight=3, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=3, min_child_weight=3, n_estimators=500 ...............
[CV] max_depth=3, min_child_weight=3, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=3, min_child_weight=3, n_estimators=500 ...............
[CV] max_depth=3, min_child_weight=3, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=3, min_child_weight=3, n_estimators=1000 ..............
[CV] max_depth=3, min_child_weight=3, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=3, min_child_weight=3, n_estimators=1000 ..............
[CV] max_depth=3, min_child_weight=3, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=3, min_child_weight=3, n_estimators=1000 ..............
[CV] max_depth=3, min_child_weight=3, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=3, min_child_weight=5, n_estimators=50 ................
[CV] max_depth=3, min_child_weight=5, n_estimators=50, score=0.7477603583426652, total= 11.0s
[CV] max_depth=3, min_child_weight=5, n_estimators=50 ................
[CV] max_depth=3, min_child_weight=5, n_estimators=50, score=0.74772504549909, total= 10.9s
[CV] max_depth=3, min_child_weight=5, n_estimators=50 ................
[CV] max_depth=3, min_child_weight=5, n_estimators=50, score=0.7477773888694436, total= 10.9s
[CV] max_depth=3, min_child_weight=5, n_estimators=100 ...............
[CV] max_depth=3, min_child_weight=5, n_estimators=100, score=0.7477603583426652, total= 21.2s
[CV] max_depth=3, min_child_weight=5, n_estimators=100 ...............
[CV] max_depth=3, min_child_weight=5, n_estimators=100, score=0.74772504549909, total= 21.0s
[CV] max_depth=3, min_child_weight=5, n_estimators=100 ...............
[CV] max_depth=3, min_child_weight=5, n_estimators=100, score=0.7477773888694436, total= 21.0s
[CV] max_depth=3, min_child_weight=5, n_estimators=200 ...............
[CV] max_depth=3, min_child_weight=5, n_estimators=200, score=0.7477603583426652, total= 41.1s
[CV] max_depth=3, min_child_weight=5, n_estimators=200 ...............
[CV] max_depth=3, min_child_weight=5, n_estimators=200, score=0.74772504549909, total= 41.3s
[CV] max_depth=3, min_child_weight=5, n_estimators=200 ...............
[CV] max_depth=3, min_child_weight=5, n_estimators=200, score=0.7477773888694436, total= 41.0s
[CV] max_depth=3, min_child_weight=5, n_estimators=500 ...............
[CV] max_depth=3, min_child_weight=5, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=3, min_child_weight=5, n_estimators=500 ...............
[CV] max_depth=3, min_child_weight=5, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=3, min_child_weight=5, n_estimators=500 ...............
[CV] max_depth=3, min_child_weight=5, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=3, min_child_weight=5, n_estimators=1000 ..............
[CV] max_depth=3, min_child_weight=5, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=3, min_child_weight=5, n_estimators=1000 ..............
[CV] max_depth=3, min_child_weight=5, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=3, min_child_weight=5, n_estimators=1000 ..............
[CV] max_depth=3, min_child_weight=5, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=5, min_child_weight=1, n_estimators=50 ................
[CV] max_depth=5, min_child_weight=1, n_estimators=50, score=0.7477603583426652, total= 10.9s
[CV] max_depth=5, min_child_weight=1, n_estimators=50 ................
[CV] max_depth=5, min_child_weight=1, n_estimators=50, score=0.74772504549909, total= 10.9s
[CV] max_depth=5, min_child_weight=1, n_estimators=50 ................
[CV] max_depth=5, min_child_weight=1, n_estimators=50, score=0.7477773888694436, total= 10.9s
[CV] max_depth=5, min_child_weight=1, n_estimators=100 ...............
[CV] max_depth=5, min_child_weight=1, n_estimators=100, score=0.7477603583426652, total= 21.0s
[CV] max_depth=5, min_child_weight=1, n_estimators=100 ...............
[CV] max_depth=5, min_child_weight=1, n_estimators=100, score=0.74772504549909, total= 21.1s
[CV] max_depth=5, min_child_weight=1, n_estimators=100 ...............
[CV] max_depth=5, min_child_weight=1, n_estimators=100, score=0.7477773888694436, total= 21.0s
[CV] max_depth=5, min_child_weight=1, n_estimators=200 ...............
[CV] max_depth=5, min_child_weight=1, n_estimators=200, score=0.7477603583426652, total= 41.3s
[CV] max_depth=5, min_child_weight=1, n_estimators=200 ...............
[CV] max_depth=5, min_child_weight=1, n_estimators=200, score=0.74772504549909, total= 41.1s
[CV] max_depth=5, min_child_weight=1, n_estimators=200 ...............
[CV] max_depth=5, min_child_weight=1, n_estimators=200, score=0.7477773888694436, total= 41.1s
[CV] max_depth=5, min_child_weight=1, n_estimators=500 ...............
[CV] max_depth=5, min_child_weight=1, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=5, min_child_weight=1, n_estimators=500 ...............
[CV] max_depth=5, min_child_weight=1, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=5, min_child_weight=1, n_estimators=500 ...............
[CV] max_depth=5, min_child_weight=1, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=5, min_child_weight=1, n_estimators=1000 ..............
[CV] max_depth=5, min_child_weight=1, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=5, min_child_weight=1, n_estimators=1000 ..............
[CV] max_depth=5, min_child_weight=1, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=5, min_child_weight=1, n_estimators=1000 ..............
[CV] max_depth=5, min_child_weight=1, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=5, min_child_weight=3, n_estimators=50 ................
[CV] max_depth=5, min_child_weight=3, n_estimators=50, score=0.7477603583426652, total= 10.9s
[CV] max_depth=5, min_child_weight=3, n_estimators=50 ................
[CV] max_depth=5, min_child_weight=3, n_estimators=50, score=0.74772504549909, total= 10.9s
[CV] max_depth=5, min_child_weight=3, n_estimators=50 ................
[CV] max_depth=5, min_child_weight=3, n_estimators=50, score=0.7477773888694436, total= 11.0s
[CV] max_depth=5, min_child_weight=3, n_estimators=100 ...............
[CV] max_depth=5, min_child_weight=3, n_estimators=100, score=0.7477603583426652, total= 21.3s
[CV] max_depth=5, min_child_weight=3, n_estimators=100 ...............
[CV] max_depth=5, min_child_weight=3, n_estimators=100, score=0.74772504549909, total= 20.9s
[CV] max_depth=5, min_child_weight=3, n_estimators=100 ...............
[CV] max_depth=5, min_child_weight=3, n_estimators=100, score=0.7477773888694436, total= 20.9s
[CV] max_depth=5, min_child_weight=3, n_estimators=200 ...............
[CV] max_depth=5, min_child_weight=3, n_estimators=200, score=0.7477603583426652, total= 41.1s
[CV] max_depth=5, min_child_weight=3, n_estimators=200 ...............
[CV] max_depth=5, min_child_weight=3, n_estimators=200, score=0.74772504549909, total= 41.4s
[CV] max_depth=5, min_child_weight=3, n_estimators=200 ...............
[CV] max_depth=5, min_child_weight=3, n_estimators=200, score=0.7477773888694436, total= 41.1s
[CV] max_depth=5, min_child_weight=3, n_estimators=500 ...............
[CV] max_depth=5, min_child_weight=3, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=5, min_child_weight=3, n_estimators=500 ...............
[CV] max_depth=5, min_child_weight=3, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=5, min_child_weight=3, n_estimators=500 ...............
[CV] max_depth=5, min_child_weight=3, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=5, min_child_weight=3, n_estimators=1000 ..............
[CV] max_depth=5, min_child_weight=3, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=5, min_child_weight=3, n_estimators=1000 ..............
[CV] max_depth=5, min_child_weight=3, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=5, min_child_weight=3, n_estimators=1000 ..............
[CV] max_depth=5, min_child_weight=3, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=5, min_child_weight=5, n_estimators=50 ................
[CV] max_depth=5, min_child_weight=5, n_estimators=50, score=0.7477603583426652, total= 11.0s
[CV] max_depth=5, min_child_weight=5, n_estimators=50 ................
[CV] max_depth=5, min_child_weight=5, n_estimators=50, score=0.74772504549909, total= 11.0s
[CV] max_depth=5, min_child_weight=5, n_estimators=50 ................
[CV] max_depth=5, min_child_weight=5, n_estimators=50, score=0.7477773888694436, total= 10.9s
[CV] max_depth=5, min_child_weight=5, n_estimators=100 ...............
[CV] max_depth=5, min_child_weight=5, n_estimators=100, score=0.7477603583426652, total= 21.0s
[CV] max_depth=5, min_child_weight=5, n_estimators=100 ...............
[CV] max_depth=5, min_child_weight=5, n_estimators=100, score=0.74772504549909, total= 21.0s
[CV] max_depth=5, min_child_weight=5, n_estimators=100 ...............
[CV] max_depth=5, min_child_weight=5, n_estimators=100, score=0.7477773888694436, total= 21.8s
[CV] max_depth=5, min_child_weight=5, n_estimators=200 ...............
[CV] max_depth=5, min_child_weight=5, n_estimators=200, score=0.7477603583426652, total= 41.2s
[CV] max_depth=5, min_child_weight=5, n_estimators=200 ...............
[CV] max_depth=5, min_child_weight=5, n_estimators=200, score=0.74772504549909, total= 41.6s
[CV] max_depth=5, min_child_weight=5, n_estimators=200 ...............
[CV] max_depth=5, min_child_weight=5, n_estimators=200, score=0.7477773888694436, total= 41.2s
[CV] max_depth=5, min_child_weight=5, n_estimators=500 ...............
[CV] max_depth=5, min_child_weight=5, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=5, min_child_weight=5, n_estimators=500 ...............
[CV] max_depth=5, min_child_weight=5, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=5, min_child_weight=5, n_estimators=500 ...............
[CV] max_depth=5, min_child_weight=5, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=5, min_child_weight=5, n_estimators=1000 ..............
[CV] max_depth=5, min_child_weight=5, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=5, min_child_weight=5, n_estimators=1000 ..............
[CV] max_depth=5, min_child_weight=5, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=5, min_child_weight=5, n_estimators=1000 ..............
[CV] max_depth=5, min_child_weight=5, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=8, min_child_weight=1, n_estimators=50 ................
[CV] max_depth=8, min_child_weight=1, n_estimators=50, score=0.7477603583426652, total= 10.9s
[CV] max_depth=8, min_child_weight=1, n_estimators=50 ................
[CV] max_depth=8, min_child_weight=1, n_estimators=50, score=0.74772504549909, total= 10.9s
[CV] max_depth=8, min_child_weight=1, n_estimators=50 ................
[CV] max_depth=8, min_child_weight=1, n_estimators=50, score=0.7477773888694436, total= 10.9s
[CV] max_depth=8, min_child_weight=1, n_estimators=100 ...............
[CV] max_depth=8, min_child_weight=1, n_estimators=100, score=0.7477603583426652, total= 21.2s
[CV] max_depth=8, min_child_weight=1, n_estimators=100 ...............
[CV] max_depth=8, min_child_weight=1, n_estimators=100, score=0.74772504549909, total= 21.0s
[CV] max_depth=8, min_child_weight=1, n_estimators=100 ...............
[CV] max_depth=8, min_child_weight=1, n_estimators=100, score=0.7477773888694436, total= 20.9s
[CV] max_depth=8, min_child_weight=1, n_estimators=200 ...............
[CV] max_depth=8, min_child_weight=1, n_estimators=200, score=0.7477603583426652, total= 41.0s
[CV] max_depth=8, min_child_weight=1, n_estimators=200 ...............
[CV] max_depth=8, min_child_weight=1, n_estimators=200, score=0.74772504549909, total= 41.4s
[CV] max_depth=8, min_child_weight=1, n_estimators=200 ...............
[CV] max_depth=8, min_child_weight=1, n_estimators=200, score=0.7477773888694436, total= 41.0s
[CV] max_depth=8, min_child_weight=1, n_estimators=500 ...............
[CV] max_depth=8, min_child_weight=1, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=8, min_child_weight=1, n_estimators=500 ...............
[CV] max_depth=8, min_child_weight=1, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=8, min_child_weight=1, n_estimators=500 ...............
[CV] max_depth=8, min_child_weight=1, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=8, min_child_weight=1, n_estimators=1000 ..............
[CV] max_depth=8, min_child_weight=1, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=8, min_child_weight=1, n_estimators=1000 ..............
[CV] max_depth=8, min_child_weight=1, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=8, min_child_weight=1, n_estimators=1000 ..............
[CV] max_depth=8, min_child_weight=1, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=8, min_child_weight=3, n_estimators=50 ................
[CV] max_depth=8, min_child_weight=3, n_estimators=50, score=0.7477603583426652, total= 10.9s
[CV] max_depth=8, min_child_weight=3, n_estimators=50 ................
[CV] max_depth=8, min_child_weight=3, n_estimators=50, score=0.74772504549909, total= 10.9s
[CV] max_depth=8, min_child_weight=3, n_estimators=50 ................
[CV] max_depth=8, min_child_weight=3, n_estimators=50, score=0.7477773888694436, total= 10.9s
[CV] max_depth=8, min_child_weight=3, n_estimators=100 ...............
[CV] max_depth=8, min_child_weight=3, n_estimators=100, score=0.7477603583426652, total= 20.9s
[CV] max_depth=8, min_child_weight=3, n_estimators=100 ...............
[CV] max_depth=8, min_child_weight=3, n_estimators=100, score=0.74772504549909, total= 21.0s
[CV] max_depth=8, min_child_weight=3, n_estimators=100 ...............
[CV] max_depth=8, min_child_weight=3, n_estimators=100, score=0.7477773888694436, total= 20.9s
[CV] max_depth=8, min_child_weight=3, n_estimators=200 ...............
[CV] max_depth=8, min_child_weight=3, n_estimators=200, score=0.7477603583426652, total= 41.3s
[CV] max_depth=8, min_child_weight=3, n_estimators=200 ...............
[CV] max_depth=8, min_child_weight=3, n_estimators=200, score=0.74772504549909, total= 41.1s
[CV] max_depth=8, min_child_weight=3, n_estimators=200 ...............
[CV] max_depth=8, min_child_weight=3, n_estimators=200, score=0.7477773888694436, total= 41.2s
[CV] max_depth=8, min_child_weight=3, n_estimators=500 ...............
[CV] max_depth=8, min_child_weight=3, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=8, min_child_weight=3, n_estimators=500 ...............
[CV] max_depth=8, min_child_weight=3, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=8, min_child_weight=3, n_estimators=500 ...............
[CV] max_depth=8, min_child_weight=3, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=8, min_child_weight=3, n_estimators=1000 ..............
[CV] max_depth=8, min_child_weight=3, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=8, min_child_weight=3, n_estimators=1000 ..............
[CV] max_depth=8, min_child_weight=3, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=8, min_child_weight=3, n_estimators=1000 ..............
[CV] max_depth=8, min_child_weight=3, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[CV] max_depth=8, min_child_weight=5, n_estimators=50 ................
[CV] max_depth=8, min_child_weight=5, n_estimators=50, score=0.7477603583426652, total= 10.9s
[CV] max_depth=8, min_child_weight=5, n_estimators=50 ................
[CV] max_depth=8, min_child_weight=5, n_estimators=50, score=0.74772504549909, total= 10.9s
[CV] max_depth=8, min_child_weight=5, n_estimators=50 ................
[CV] max_depth=8, min_child_weight=5, n_estimators=50, score=0.7477773888694436, total= 10.9s
[CV] max_depth=8, min_child_weight=5, n_estimators=100 ...............
[CV] max_depth=8, min_child_weight=5, n_estimators=100, score=0.7477603583426652, total= 20.9s
[CV] max_depth=8, min_child_weight=5, n_estimators=100 ...............
[CV] max_depth=8, min_child_weight=5, n_estimators=100, score=0.74772504549909, total= 21.4s
[CV] max_depth=8, min_child_weight=5, n_estimators=100 ...............
[CV] max_depth=8, min_child_weight=5, n_estimators=100, score=0.7477773888694436, total= 21.0s
[CV] max_depth=8, min_child_weight=5, n_estimators=200 ...............
[CV] max_depth=8, min_child_weight=5, n_estimators=200, score=0.7477603583426652, total= 41.2s
[CV] max_depth=8, min_child_weight=5, n_estimators=200 ...............
[CV] max_depth=8, min_child_weight=5, n_estimators=200, score=0.74772504549909, total= 41.3s
[CV] max_depth=8, min_child_weight=5, n_estimators=200 ...............
[CV] max_depth=8, min_child_weight=5, n_estimators=200, score=0.7477773888694436, total= 41.0s
[CV] max_depth=8, min_child_weight=5, n_estimators=500 ...............
[CV] max_depth=8, min_child_weight=5, n_estimators=500, score=0.7477603583426652, total= 1.7min
[CV] max_depth=8, min_child_weight=5, n_estimators=500 ...............
[CV] max_depth=8, min_child_weight=5, n_estimators=500, score=0.74772504549909, total= 1.7min
[CV] max_depth=8, min_child_weight=5, n_estimators=500 ...............
[CV] max_depth=8, min_child_weight=5, n_estimators=500, score=0.7477773888694436, total= 1.7min
[CV] max_depth=8, min_child_weight=5, n_estimators=1000 ..............
[CV] max_depth=8, min_child_weight=5, n_estimators=1000, score=0.7477603583426652, total= 3.4min
[CV] max_depth=8, min_child_weight=5, n_estimators=1000 ..............
[CV] max_depth=8, min_child_weight=5, n_estimators=1000, score=0.74772504549909, total= 3.4min
[CV] max_depth=8, min_child_weight=5, n_estimators=1000 ..............
[CV] max_depth=8, min_child_weight=5, n_estimators=1000, score=0.7477773888694436, total= 3.4min
[Parallel(n_jobs=1)]: Done 180 out of 180 | elapsed: 227.8min finished
Grid best score (f1): 0.7477542636024276
Grid best parameter (max. f1): {'max_depth': 1, 'min_child_weight': 1, 'n_estimators': 50}