У меня проблема с чтением случайных данных в моем Arduino Mega (Master) с моего Arduino Uno (Slave) при использовании связи I2C.
Немного предыстории: я читаю данные Encoder из Uno и отправляю в Mega через связь I2C. Данные датчика используются в MEga для регулировки скорости двигателя таким образом, чтобы обороты в секунду различных колес имели одинаковое значение.
Проблема чтения случайных данных возникает, когда я включаю условие или функцию IF.
Даже если включенное условие IF является пустым или вызовом функции с пустым телом, он начинает читать случайные неправильные данные из Uno.
Если у меня нет корректирующей части (условия / функции IF) кода, чтение данных из Uno работает нормально.
Если кто-нибудь может помочь, это будет с благодарностью.
Мастер-код:
#include <SoftwareSerial.h>
#include <SabertoothSimplified.h>
// Include the required Wire library for I2C<br>#include
#include <Wire.h>
// RX on pin 17 (to S2), TX on pin 16 (to S1).
SoftwareSerial SWSerial(NOT_A_PIN, 16);
// Use SWSerial as the serial port.
SabertoothSimplified ST(SWSerial);
//////////////////ENCODER DATA//////////////////
unsigned int revolutions_L_rpm = 0;
unsigned int revolutions_R_rpm = 0;
int16_t x = 0;
int16_t y = 0;
////////////////////////////////////////////////
//////////////VARIABLES FOR ADJUST//////////////
int error = 0;
int kp = 12;
int adjusted = 0;
////////////////////////////////////////////////
////////////////////MOTORS//////////////////////
//Declare the arduino pins
int LEDg = 7;
int LEDr = 6;
int LEDy = 5;
int speedVar = 0;
int speedOne = 0;
int speedTwo = 0;
int power;
////////////////////END/////////////////////////
void setup() {
//initlize the mode of the pins
pinMode(LEDg,OUTPUT);
pinMode(LEDr,OUTPUT);
pinMode(LEDy,OUTPUT);
//set the serial communication rate
Serial.begin(9600);
SWSerial.begin(9600);
Wire.begin();
}
void loop()
{
//check whether arduino is reciving signal or not
if(Serial.available() > 0){
char val = Serial.read();//reads the signal
Serial.print("Recieved: ");
Serial.println(val);
switch(val){
/*********Increase speed by 1 as long as e(triangle) is held*********/
case 'a':
forward();
break;
/*********Decrease speed by 1 as long as g(x) is held*********/
case 'c':
reverse();
break;
/*********Increase speed by 1 as long as e(triangle) is held*********/
case 'd':
turnLeft();
break;
/*********Decrease speed by 1 as long as g(x) is held*********/
case 'b':
turnRight();
break;
/*********Toggle when Circle is held for 5 seconds*********/
case 'f':
toggleSwitch(LEDy);
break;
/*********Toggle when Square is held for 5 seconds*********/
case 'h':
stopMotors();
break;
}
Serial.print("sppedVar = ");
Serial.print(speedVar);
Serial.print("\tleftSpeed: ");
Serial.print(speedOne);
Serial.print("\trightSpeed: ");
Serial.println(speedTwo);
}
Wire.requestFrom(9,4); // Request 4 bytes from slave arduino (9)
byte a = Wire.read();
Serial.print("a: ");
Serial.print(a);
byte b = Wire.read();
Serial.print(" b: ");
Serial.print(b);
byte e = Wire.read();
Serial.print(" --- e: ");
Serial.print(e);
byte f = Wire.read();
Serial.print(" f: ");
Serial.print(f);
x = a;
x = (x << 8) | b;
Serial.print("\tX: ");
Serial.print(x);
y = e;
y = (y << 8) | f;
Serial.print("\tY: ");
Serial.print(y);
revolutions_L_rpm = x;
revolutions_R_rpm = y;
if ((revolutions_L_rpm != revolutions_R_rpm) && (speedVar != 0)){
error = 0;
error = revolutions_L_rpm - revolutions_R_rpm;
adjusted = error/kp;
Serial.print("Error: ");
Serial.print(error);
Serial.print("Error/kp: ");
Serial.println(adjusted);
if ((speedTwo < 20) && (speedTwo > -20)){
speedTwo -= adjusted;
power = speedTwo;
ST.motor(2, -power);
//delay(20);
}
}
// Print out rpm
Serial.print("Left motor rps*100: ");
Serial.print(revolutions_L_rpm);
Serial.print(" ///// Right motor rps*100: ");
Serial.println(revolutions_R_rpm);
// Print out speed
Serial.print("speedOne: ");
Serial.print(speedOne);
Serial.print("\tspeedTwo: ");
Serial.println(speedTwo);
delay(1000);
}
Код ведомого:
// Include the required Wire library for I2C<br>#include <Wire.h>
#include <Wire.h>
// Checked for main program
volatile boolean counterReady;
// Internal to counting routine
unsigned int timerPeriod;
unsigned int timerTicks;
unsigned long overflowCount;
// The pin the encoder is connected
int encoder_in_L = 2;
int encoder_in_R = 3;
// The number of pulses per revolution
// depends on your index disc!!
unsigned int pulsesperturn = 16;
// The total number of revolutions
int16_t revolutions_L = 0;
int16_t revolutions_R = 0;
int16_t revolutions_L_rpm = 0;
int16_t revolutions_R_rpm = 0;
// Initialize the counter
int16_t pulses_L = 0;
int16_t pulses_R = 0;
byte myData[4];
// This function is called by the interrupt
void count_L() {
pulses_L++;
}
void count_R() {
pulses_R++;
}
void startCounting(unsigned int ms) {
counterReady = false; // time not up yet
timerPeriod = ms; // how many ms to count to
timerTicks = 0; // reset interrupt counter
overflowCount = 0; // no overflows yet
// Reset timer 2
TCCR2A = 0;
TCCR2B = 0;
// Timer 2 - gives us our 1 ms counting interval
// 16 MHz clock (62.5 ns per tick) - prescaled by 128
// counter increments every 8 µs.
// So we count 125 of them, giving exactly 1000 µs (1 ms)
TCCR2A = bit (WGM21) ; // CTC mode
OCR2A = 124; // count up to 125 (zero relative!!!!)
// Timer 2 - interrupt on match (ie. every 1 ms)
TIMSK2 = bit (OCIE2A); // enable Timer2 Interrupt
TCNT2 = 0; // set counter to zero
// Reset prescalers
GTCCR = bit (PSRASY); // reset prescaler now
// start Timer 2
TCCR2B = bit (CS20) | bit (CS22) ; // prescaler of 128
}
ISR (TIMER2_COMPA_vect){
// see if we have reached timing period
if (++timerTicks < timerPeriod)
return;
TCCR2A = 0; // stop timer 2
TCCR2B = 0;
TIMSK2 = 0; // disable Timer2 Interrupt
counterReady = true;
if(counterReady){
Serial.print("Pulses_L: ");
Serial.print(pulses_L);
Serial.print(" Pulses_R: ");
Serial.println(pulses_R);
// multiplying by 100 to get a greater difference to compare
revolutions_L_rpm = (pulses_L * 100) / pulsesperturn;
revolutions_R_rpm = (pulses_R * 100) / pulsesperturn;
// Total revolutions
// revolutions_L = revolutions_L + (pulses_L / pulsesperturn);
// revolutions_R = revolutions_R + (pulses_R / pulsesperturn);
pulses_L = 0;
pulses_R = 0;
}
}
void requestEvent() {
myData[0] = (revolutions_L_rpm >> 8) & 0xFF;
myData[1] = revolutions_L_rpm & 0xFF;
myData[2] = (revolutions_R_rpm >> 8) & 0xFF;
myData[3] = revolutions_R_rpm & 0xFF;
Wire.write(myData, 4); //Sent 4 bytes to master
}
void setup() {
Serial.begin(9600);
pinMode(encoder_in_L, INPUT);
pinMode(encoder_in_R, INPUT);
attachInterrupt(0, count_L, RISING); //attachInterrupt(digitalPinToInterrupt(encoder_in_L, count_L, RISING);
attachInterrupt(1, count_R, RISING); //attachInterrupt(digitalPinToInterrupt(encoder_in_R, count_R, RISING);
// Start the I2C Bus as Slave on address 9
Wire.begin(9);
// Attach a function to trigger when something is received.
Wire.onRequest(requestEvent);
}
void loop() {
// stop Timer 0 interrupts from throwing the count out
byte oldTCCR0A = TCCR0A;
byte oldTCCR0B = TCCR0B;
TCCR0A = 0; // stop timer 0
TCCR0B = 0;
startCounting (1000); // how many ms to count for
while (!counterReady)
{ } // loop until count over
// Print out rpm
Serial.print("Left motor rps: ");
Serial.println(revolutions_L_rpm);
Serial.print("Right motor rps: ");
Serial.println(revolutions_R_rpm);
// Print out revolutions
// Serial.print("Left motor revolution count: ");
// Serial.println(revolutions_L);
// Serial.print("Right motor revolution count: ");
// Serial.println(revolutions_R);
// restart timer 0
TCCR0A = oldTCCR0A;
TCCR0B = oldTCCR0B;
delay(200);
}