Ошибка неверного аргумента при выполнении кода Tensorflow Convolutional Neural Network - PullRequest
0 голосов
/ 21 марта 2019

Так что я довольно новичок в tenorflow и python, и в этом году я занимаюсь исследовательским проектом, в котором я разрабатываю простую сверточную нейронную сеть, которая может обнаруживать рукописные изображения и угадывать, какой почерк принадлежит кому на основе обучающих образцов.Изображения, используемые для этого набора данных, являются моими собственными.Проблема, с которой я сталкиваюсь, заключается в том, что я сталкиваюсь с этой ошибкой при компиляции своего кода:

Shape must be rank 0 but is rank 2 for 'ReadFile' (op: 'ReadFile') with input shapes: [5,4].

Я посмотрел на аналогичный пост и увидел ответ, но проблема в том, что мой кодЯ совершенно не разбираюсь в этом коде. Я не очень глубоко разбираюсь в нем.

Ниже приведен мой код для моего CNN.Я использовал несколько онлайн-ресурсов и учебных пособий для его создания:

# Import statements
import os, sys
import tensorflow as tf
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.utils import *
from tensorflow.python.keras.layers import *
from tensorflow.python.keras.layers.advanced_activations import *
from tensorflow.python.keras.optimizers import *
from tensorflow.python.keras.losses import *
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from math import floor, ceil
from pylab import rcParams

# Disables the warning
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

# Filename vectors
imageFile = tf.constant([['bob1.jpg', 'bob2.jpg', 'bob3.jpg', 'bob4.jpg'],
                        ['peter1.jpg', 'peter2.jpg', 'peter3.jpg', 'peter4.jpg'],
                        ['steve1.jpg', 'steve2.jpg', 'steve3.jpg', 'steve4.jpg'],
                        ['josh1.jpg', 'josh2.jpg', 'josh3.jpg', 'josh4.jpg'],
                        ['chris1.jpg', 'chris2.jpg', 'chris3.jpg', 'chris4.jpg']])
testFile = tf.constant(['bob5.jpg', 'peter5.jpg', 'steve5.jpg', 'josh5.jpg', 'chris5.jpg'])

# Label vectors
imageLabels = tf.read_file([['bob','bob','bob','bob'],
                        ['peter','peter','peter','peter'],
                        ['steve','steve','steve','steve'],
                        ['josh','josh','josh','josh'],
                        ['chris','chris','chris','chris']])
testLabels = tf.read_file(['bob', 'peter', 'steve', 'josh', 'chris'])

# Resizing function that enables all images to be sized the same
def _resize_function(filename, label):
  image_name = tf.read_file(filename)
  image_decoded = tf.image.decode_jpeg(image_name, channels = 2)
  image = tf.cast(image_decoded, tf.float32)
  image_resized = tf.image.resize_images(image, [1290, 560])
  return image_resized, label

# Datasets
trainSet = tf.data.Dataset.from_tensor_slices((imageFile, imageLabels))
trainSet = trainSet.map(_resize_function)
testSet = tf.data.Dataset.from_tensor_slices((testFile, testLabels))
testSet = testSet.map(_resize_function)

# Iterators
train_iterator = trainSet.make_one_shot_iterator()
images, labels = trainSet.get_next()
test_iterator = testSet.make_one_shot_iterator()
testImg, testLb = testSet.get_next()

# Model
model = Sequential()
model.add(Conv2D(32, 3, 3, input_shape = (5, 4, 1, 1), activation = 'relu'))
model.add(MaxPooling2D((2, 2), padding = 'same'))
model.add(Dropout(0.25))
model.add(Conv2D(64, 3, 3, input_shape = (5, 4, 1, 1), activation = 'relu'))
model.add(MaxPooling2D((2, 2), padding = 'same'))
model.add(Dropout(0.25))
model.add(Conv2D(128, 3, 3, input_shape = (5, 4, 1, 1), activation = 'relu'))
model.add(MaxPooling2D((2, 2), padding = 'same'))
model.add(Dropout(0.25))
# FInal layer - flattening
model.add(Flatten())
model.add(Dense(128, activation = 'relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='softmax'))

# Compilation
model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])

# Run. Epochs should be varied as well.
fit = model.fit(images, labels, steps_per_epoch = 4, batch_size = 5, epochs = 2, verbose = 1, validation_data = (testImg, testLb))
score = model.evaluate(testImg, testLb, verbose = 0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])

Ошибка исходит от _resize_function или от ярлыков?Если бы кто-нибудь мог помочь мне с этой ошибкой, это было бы здорово.

1 Ответ

0 голосов
/ 21 марта 2019

следуя дорожке вашего поста, я предполагаю, что у вас возникла ошибка:

imageLabels = tf.read_file([['bob','bob','bob','bob'],
                    ['peter','peter','peter','peter'],
                    ['steve','steve','steve','steve'],
                    ['josh','josh','josh','josh'],
                    ['chris','chris','chris','chris']])

Вы передаете матрицу формы [5,4], и, насколько я понимаю, это не то, что ожидаетсяс помощью функции.

Я думаю, что это опечатка, и вы имели в виду tf.constant для меток, а не tf.read_file просто заменить, и вы должны быть в порядке (по крайней мере, для этой части)

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...