Подход состоит в том, чтобы собрать все уникальные ключи и построить соответствующие фреймы данных. Я добавил немного функционального аромата.
Образец набора данных:
name,year,country,id
Bayern Munich,2014,Germany,7747
Bayern Munich,2014,Germany,7747
Bayern Munich,2014,Germany,7746
Borussia Dortmund,2014,Germany,7746
Borussia Mönchengladbach,2014,Germany,7746
Schalke 04,2014,Germany,7746
Schalke 04,2014,Germany,7753
Lazio,2014,Germany,7753
Код:
val df = spark.read.format(source = "csv")
.option("header", true)
.option("delimiter", ",")
.option("inferSchema", true)
.load("groupby.dat")
import spark.implicits._
//collect data for each key into a data frame
val uniqueIds = df.select("id").distinct().map(x => x.mkString.toInt).collect()
// List buffer to hold separate data frames
var dataframeList: ListBuffer[org.apache.spark.sql.DataFrame] = ListBuffer()
println(uniqueIds.toList)
// filter data
uniqueIds.foreach(x => {
val tempDF = df.filter(col("id") === x)
dataframeList += tempDF
})
//show individual data frames
for (tempDF1 <- dataframeList) {
tempDF1.show()
}