Моя цель - найти корреляцию между UNBALANCE_2
, UNBALANCE_1
, ANGLE_1
, ANGLE_2
и W
и сделать прогноз, поэтому я решил использовать регрессию, сейчас у меня проблемачтобы определить правильные уравнения для моей модели.
То, что я сделал, я использовал nls
, но по-прежнему нет результатов
model_nls <- nls(W ~ b1*UNBALANCE_2^2+b2*UNBALANCE_1+b3*ANGLE_1+b4*ANGLE_2,start = list(b1 = 17,b2 = 7, b3 = 0, b4 = 0), data = sub12)
summary(model_nls)
Formula: W ~ b1 * UNBALANCE_2^2 + b2 * UNBALANCE_1 + b3 * ANGLE_1 + b4 *
ANGLE_2
Parameters:
Estimate Std. Error t value Pr(>|t|)
b1 1.751e+01 7.198e-01 24.33 <2e-16 ***
b2 6.887e+00 1.336e-01 51.54 <2e-16 ***
b3 2.387e-03 6.295e-05 37.92 <2e-16 ***
b4 2.384e-03 6.405e-05 37.22 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.7923 on 11264 degrees of freedom
Number of iterations to convergence: 1
Achieved convergence tolerance: 1.048e-09
summary(sub12)
UNBALANCE_1 ANGLE_1 UNBALANCE_2 ANGLE_2 W
Min. :0.00100 Min. : 0.00 Min. :0.0010 Min. : 0.00 Min. :1.0
1st Qu.:0.06400 1st Qu.: 85.97 1st Qu.:0.0700 1st Qu.: 87.38 1st Qu.:2.0
Median :0.09900 Median :169.60 Median :0.1060 Median :171.70 Median :2.0
Mean :0.09966 Mean :175.40 Mean :0.1057 Mean :176.00 Mean :1.9
3rd Qu.:0.13600 3rd Qu.:266.70 3rd Qu.:0.1430 3rd Qu.:264.00 3rd Qu.:2.0
Max. :0.19500 Max. :360.00 Max. :0.1950 Max. :360.00 Max. :6.0
Далееподержанный простой gam
модель
model <- gam(W ~ s(UNBALANCE_2) + s(ANGLE_1) + s(UNBALANCE_1) + s(ANGLE_2), data = sub12, family = quasipoisson)
summary(model)
Call: gam(formula = W ~ s(UNBALANCE_2) + s(ANGLE_1) + s(UNBALANCE_1) +
s(ANGLE_2), family = quasipoisson, data = sub12)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.77207 0.04447 0.06886 0.08413 2.39954
(Dispersion Parameter for quasipoisson family taken to be 0.1908)
Null Deviance: 1989.01 on 11267 degrees of freedom
Residual Deviance: 1983.803 on 11251 degrees of freedom
AIC: NA
Number of Local Scoring Iterations: 5
Anova for Parametric Effects
Df Sum Sq Mean Sq F value Pr(>F)
s(UNBALANCE_2) 1 0.33 0.32869 1.7230 0.18933
s(ANGLE_1) 1 0.01 0.00592 0.0310 0.86020
s(UNBALANCE_1) 1 0.72 0.71901 3.7691 0.05223 .
s(ANGLE_2) 1 0.00 0.00419 0.0220 0.88222
Residuals 11251 2146.28 0.19076
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Anova for Nonparametric Effects
Npar Df Npar F Pr(F)
(Intercept)
s(UNBALANCE_2) 3 1.62467 0.18132
s(ANGLE_1) 3 2.20440 0.08536 .
s(UNBALANCE_1) 3 2.46577 0.06032 .
s(ANGLE_2) 3 0.99663 0.39323
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
sigma(model)/mean(x12$W)
[1] 0.2230563
plot((glm(W ~ UNBALANCE_1 + ANGLE_1 + UNBALANCE_2 + ANGLE_2, data = x13, family = poisson)))
Пожалуйста, помогите выяснить:
Конечно, я должен использовать функцию sin
в моей модели?
Можно ли сделать ценный прогноз, когда значение p
указывает на очень слабую корреляцию между параметрами?
Что касается 3-х моделей, остатки очень высоки, указывает на то, что модель качественно неверна?что я должен делать ?
Спасибо за вашу помощь.