Я не мог найти векторное решение для этого. Я хотел бы увидеть один. Тем не менее, проблема не так сложна при прохождении строки за строкой. Я надеюсь, что ваш датафрейм не слишком большой !!
Сначала настройте данные.
data = {
"quantity": [
5,1,3,4,2,1,1,3,1,2,1,2,3,3,1,3
],
"in":[
0,0,1,1,1,0,0,0,-1,0,0,0,0,0,0,0
],
"cumulative_in": [
np.NaN,np.NaN,3,7,9,np.NaN,np.NaN,np.NaN,np.NaN,np.NaN,np.NaN,np.NaN,np.NaN,np.NaN,np.NaN,np.NaN
]
}
Затем настройте фрейм данных и дополнительные столбцы. Я использовал np.NaN для «out», но 0 было проще для «cumulative_subtracted»
df=pd.DataFrame(data)
df['out'] = np.NaN
df['cumulative_subtracted'] = 0
Установить начальные переменные
last_in = 0.
reduce = False
К сожалению, переходите от одного кадра к другому.
for i in df.index:
# check if necessary to adjust last_in value.
if ~np.isnan(df.at[i, "cumulative_in"]) and reduce == False:
last_in = df.at[i, "cumulative_in"]
# check if -1 and change reduce to true
elif df.at[i, "in"] == -1:
reduce = True
# check if reduce true, the implement reductions
elif reduce == True:
df.at[i, "out"] = 1
if df.at[i, "quantity"] <= last_in:
last_in -= df.at[i, "quantity"]
df.at[i, "cumulative_in"] = last_in
df.at[i, "cumulative_subtracted"] = (
df.at[i - 1, "cumulative_subtracted"] + df.at[i, "quantity"]
)
elif df.at[i, "quantity"] > last_in:
df.at[i, "cumulative_in"] = 0
df.at[i, "cumulative_subtracted"] = (
df.at[i - 1, "cumulative_subtracted"] + last_in
)
last_in = 0
reduce = False
Это работает для данных и, надеюсь, для всего вашего набора данных.
печать (ДФ)
quantity in cumulative_in out cumulative_subtracted
0 5 0 NaN NaN 0
1 1 0 NaN NaN 0
2 3 1 3.0 NaN 0
3 4 1 7.0 NaN 0
4 2 1 9.0 NaN 0
5 1 0 NaN NaN 0
6 1 0 NaN NaN 0
7 3 0 NaN NaN 0
8 1 -1 NaN NaN 0
9 2 0 7.0 1.0 2
10 1 0 6.0 1.0 3
11 2 0 4.0 1.0 5
12 3 0 1.0 1.0 8
13 3 0 0.0 1.0 9
14 1 0 NaN NaN 0
15 3 0 NaN NaN 0