Я изо всех сил пытаюсь найти решение для следующей проблемы.У меня есть df с id's/ dob's
и еще один месяц месяцем, как указано ниже
set.seed(33)
df <- data.frame(dob = sample(seq(as.Date('1940/01/01'), as.Date('2010/01/01'), by="day"), 10),
id = seq(1:10) )
monthbucket <- data.frame(month = format(seq(as.Date("2010-01-01"),as.Date("2011-01-01"),by="months"),'%Y-%m'),
startmonth = seq(as.Date("2010-01-01"),as.Date("2011-01-01"),by="months"),
endmonth = seq(as.Date("2010-02-01"),as.Date("2011-02-01"),by="months")-1)
Я пытаюсь получить вывод, который дает мне количество членов в возрастных группах (below 19\ 19-64\ above 64)
для каждого из моих ежемесячных сегментов.Подсчет, очевидно, переключается на год, когда у людей есть дни рождения.
Я получил расчет возраста с помощью чего-то вроде
age.fct <- function(dob, bucketdate) {
period <- as.period(interval(dob, bucketdate),unit = "year")
period$year}
Я предполагаю, что общий подход заключается в том, чтобы рассчитать возраст для каждого месяца,назначить в один из 3 age groups
и считать по месяцам.Любые предложения?
РЕДАКТИРОВАТЬ 1.
Спасибо за все различные подходы, я просто провел краткий тест на решения, чтобы определить, какой ответ принять.Каким-то образом решение с таблицей данных не сработало в моем наборе тестовых данных, но я проверю, как только у меня будет несколько минут в следующие дни.
set.seed(33)
df <- data.frame(dob = sample(seq(as.Date('1940/01/01'), as.Date('2010/01/01'), by="day"), 10000),
id = seq(1:10000) )
monthbucket <- data.frame(month = format(seq(as.Date("2010-01-01"),as.Date("2011-01-01"),by="months"),'%Y-%m'),
startmonth = seq(as.Date("2010-01-01"),as.Date("2011-01-01"),by="months"),
endmonth = seq(as.Date("2010-02-01"),as.Date("2011-02-01"),by="months")-1)
birth_days <- df$dob
month_bucket <- monthbucket$startmonth
и эталонный тест
microbenchmark::microbenchmark(
MM= monthbucket %>% group_by_all %>% expand(id=df$id) %>% left_join(.,{df %>% mutate(birth_month =cut(dob, "month"))},by="id") %>% mutate(age=time_length(difftime(startmonth, birth_month),"years")) %>%
mutate(age_cat=case_when(age<19 ~ "<19", age>64 ~ ">64",TRUE ~ "19-64")) %>% group_by(month) %>% count(age_cat) %>% gather(variable, count, n) %>%
unite(variable, age_cat) %>% spread(variable, count)
,
AkselA = {ages <- as.data.frame(t(unclass(outer(monthbucket$startmonth, df$dob, "-")/365.25)))
ages <- do.call(data.frame, lapply(ages, cut, c(0, 19, 64, Inf), c("0-19", "19-64", "64+")))
ages <- sapply(ages, table)
colnames(ages) <- monthbucket$month
},
Cole1 ={t(table(apply(X = outer(month_bucket, birth_days, `-`) / 365.25, MARGIN = 2, FUN = cut, c(0,19,65, Inf)), rep(format(month_bucket,'%Y-%m'), length(birth_days))))
},
# cole2={ cast(CJ(month_bucket, birth_days)[, .N, by = .(month_bucket , cut(as.numeric(month_bucket - birth_days)/365.25, c(0,19,65,Inf)))], month_bucket ~ cut, value.var = 'N')
# },
#
Cole3={crossing(month_bucket, birth_days)%>%count(month_bucket, age_range = cut(as.numeric(month_bucket - birth_days) / 365.25, c(0,19,65,Inf)))%>%spread(age_range, n)
},
Cole4={all_combos <- expand.grid(month_bucket = month_bucket, birth_days = birth_days)
all_combos$age <- as.numeric(all_combos$month_bucket - all_combos$birth_days) / 365.25
all_combos$cut_r <- cut(all_combos$age, c(0,19,65,Inf))
reshape(data = aggregate( all_combos$month_bucket, by = list(bucket = all_combos$month_bucket,age_group = all_combos$cut_r), FUN = length), timevar = 'age_group' , idvar = 'bucket', direction = 'wide' )
},
times = 1L)
Unit: milliseconds
expr min lq mean median uq max neval
MM 4249.02810 4249.02810 4249.02810 4249.02810 4249.02810 4249.02810 1
AkselA 17.12697 17.12697 17.12697 17.12697 17.12697 17.12697 1
Cole1 3237.94534 3237.94534 3237.94534 3237.94534 3237.94534 3237.94534 1
Cole3 23.63945 23.63945 23.63945 23.63945 23.63945 23.63945 1
Cole4 877.92782 877.92782 877.92782 877.92782 877.92782 877.92782 1
Основанный на скорости подход AkselA кажется самым быстрым, но я получаю другой результат для подхода MM по сравнению со всеми другими (как только AkselA изменится на 65 в отрезанной части cut, c(0, 19, 64, Inf)..
. Я приму ответ на основе скорости, но я посмотрю наразличия в результатах!