Я создал класс, который реализует обобщенную версию поиска BFS:
from collections import deque
class NodeSolver:
'''Class for modeling problems that can be modeled as a directed graph with goal nodes'''
def __init__(self, namer, detector, expander, follower):
'''
Whatever decides to use this gets to define what structure info is.
namer: takes info representing a node and returns a hashable object (the name);
names must be equal if and only if the nodes are equal
detector: takes info and returns True if the node represented by the info is the goal node,
...False otherwise.
expander: takes info and returns an iterable of moves that can be made from the node
...that the info represents. (a.k.a. paths leading out of that node)
follower: takes info and a move that can be made from the node that the info represents,
...and returns the info that represents the node that the move leads to
'''
self.get_name = namer
self.is_goal = detector
self.get_moves = expander
self.follow_move = follower
class BFSSolver(NodeSolver):
'''Class for solving node problems with breadth-first-search to reach the goal node'''
def solve(self, start_info):
'''
Returns the list of moves needed to reach the goal node
...from the node represented by the parameter.
Uses Breadth-first Search to go through the node tree
'''
if self.is_goal(start_info):
return []
start_name = self.get_name(start_info)
# data is in the form (info, path)
name_to_data = {start_name: (start_info, [])}
queue = deque()
queue.appendleft(start_name)
while queue:
current_name = queue.pop()
current_info, current_path = name_to_data[current_name]
expanded_moves = self.get_moves(current_info)
# print("possible moves from {} is {}".format(current_info, expanded_moves))
for move in expanded_moves:
child_info = self.follow_move(current_info, move)
child_path = current_path[:]
child_path.append(move)
if self.is_goal(child_info):
return child_path
child_name = self.get_name(child_info)
if child_name not in name_to_data:
# new, needs to be expanded
name_to_data[child_name] = (child_info, child_path)
queue.appendleft(child_name)
return None
Реализация того, что считается info
, move
или name
, - это всевплоть до человека, который использует класс.
Однако, как только для них будут приняты определения, они должны оставаться последовательными.Например, info
может быть типом объекта Info
, который создает пользователь.move
может быть просто целым числом.name
может быть просто строкой.
После того, как эти определения выбраны, я хочу, чтобы средство проверки типов могло гарантировать, что пользователь придерживается этих определений.
Как мнеиспользовать проверку типов для выполнения чего-то подобного?
Пока что я сделал:
from collections import deque
from typing import Callable, Any, Iterable, List, Deque, Tuple, Dict, Optional, Hashable
# pylint: disable=invalid-name
# Type definitions
# Can be literally anything
Info = Any
Name = Hashable
# Can be literally anything
Move = Any
# pylint: enable=invalid-name
class NodeSolver:
'''Class for modeling problems that can be modeled as a directed graph with goal nodes'''
def __init__(self, namer: Callable[[Info], Name],
detector: Callable[[Info], bool],
expander: Callable[[Info], Iterable[Move]],
follower: Callable[[Info, Move], Info]):
'''
Whatever decides to use this gets to define what structure info is.
namer: takes info representing a node and returns a hashable object (the name);
names must be equal if and only if the nodes are equal
detector: takes info and returns True if the node represented by the info is the goal node,
...False otherwise.
expander: takes info and returns an iterable of moves that can be made from the node
...that the info represents. (a.k.a. paths leading out of that node)
follower: takes info and a move that can be made from the node that the info represents,
...and returns the info that represents the node that the move leads to
'''
self.get_name = namer
self.is_goal = detector
self.get_moves = expander
self.follow_move = follower
class BFSSolver(NodeSolver):
'''Class for solving node problems with breadth-first-search to reach the goal node'''
def solve(self, start_info: Info) -> Optional[List[Move]]:
'''
Returns the list of moves needed to reach the goal node
...from the node represented by the parameter.
Uses Breadth-first Search to go through the node tree
'''
if self.is_goal(start_info):
return []
start_name = self.get_name(start_info)
# data is in the form (info, path)
name_to_data: Dict[Name, Tuple[Info, List[Move]]] = {start_name: (start_info, [])}
queue: Deque[Name] = deque()
queue.appendleft(start_name)
while queue:
current_name = queue.pop()
current_info, current_path = name_to_data[current_name]
expanded_moves = self.get_moves(current_info)
# print("possible moves from {} is {}".format(current_info, expanded_moves))
for move in expanded_moves:
child_info = self.follow_move(current_info, move)
child_path = current_path[:]
child_path.append(move)
if self.is_goal(child_info):
return child_path
child_name = self.get_name(child_info)
if child_name not in name_to_data:
# new, needs to be expanded
name_to_data[child_name] = (child_info, child_path)
queue.appendleft(child_name)
return None
Однако я не уверен, как класс, который использует это, сможет установитьэти переменные для проверки типов, и я также не уверен, что произойдет, если несколько классов используют этот класс с разными определениями для Info
, Move
и Name
.
Кроме того, я получаюошибки о наличии Any
повсюду.