[Новый ответ в дополнение к предыдущему]
Мне показалось, что мой ответ становится слишком большим, поэтому я добавляю это улучшенное решение в отдельный.
Это базовый решатель алгебры для простых уравнений, который будет выводить оператор присваивания для другого члена входного уравнения:
Например:
solveFor("d","a=b+c/d") # --> 'd=c/(a-b)'
С помощью этой функции вы можете дополнительноулучшить класс SmartFormula, пытаясь использовать алгебру, прежде чем вернуться к Ньютон-Рафсону.Это обеспечит более надежные результаты, когда уравнение достаточно простое для функции solveFor ().
Функция solveFor () может решить уравнение для любого члена, который встречается в формуле только один раз.Он будет «понимать» вычисления до тех пор, пока решаемые компоненты связаны только с основными операциями (+, -, *, /, **).Любая группа в скобках, которая не содержит целевой термин, будет обрабатываться «как есть» без дальнейшей интерпретации.Это позволяет вам помещать сложные функции / операторы в скобки, чтобы другие термины могли быть решены даже при наличии этих специальных вычислений.
import re
from itertools import accumulate
def findGroups(expression):
levels = list(accumulate(int(c=="(")-int(c==")") for c in expression))
groups = "".join([c,"\n"][lv==0] for c,lv in zip(expression,levels)).split("\n")
groups = [ g+")" for g in groups if g ]
return sorted(groups,key=len,reverse=True)
functionMap = [("sin","asin"),("cos","acos"),("tan","atan"),("log10","10**"),("exp","log")]
functionMap += [ (b,a) for a,b in functionMap ]
def solveFor(term,equation):
equation = equation.replace(" ","").replace("**","†")
termIn = re.compile(f"(^|\\W){term}($|\\W)")
if len(termIn.findall(equation)) != 1: return None
left,right = equation.split("=",1)
if termIn.search(right): left,right = right,left
groups = { f"#{i}#":group for i,group in enumerate(findGroups(left)) }
for gid,group in groups.items(): left = left.replace(group,gid)
termGroup = next((gid for gid,group in groups.items() if termIn.search(group)),"##" )
def moveTerms(leftSide,rightSide,oper,invOper):
keepLeft = None
for i,x in enumerate(leftSide.split(oper)):
if termGroup in x or termIn.search(x):
keepLeft = x; continue
x = x or "0"
if any(op in x for op in "+-*/"): x = "("+x+")"
rightSide = invOper[i>0].replace("{r}",rightSide).replace("{x}",x)
return keepLeft, rightSide
def moveFunction(leftSide,rightSide,func,invFunc):
fn = leftSide.split("#",1)[0]
if fn.split(".")[-1] == func:
return leftSide[len(fn):],fn.replace(func,invFunc)
return leftSide,rightSide
left,right = moveTerms(left,right,"+",["{r}-{x}"]*2)
left,right = moveTerms(left,right,"-",["{x}-{r}","{r}+{x}"])
left,right = moveTerms(left,right,"*",["({r})/{x}"]*2)
left,right = moveTerms(left,right,"/",["{x}/({r})","({r})*{x}"])
left,right = moveTerms(left,right,"†",["log({r})/log({x})","({r})†(1/{x})"])
for func,invFunc in functionMap:
left,right = moveFunction(left,right,func,f"{invFunc}({right})")
for sqrFunc in ["math.sqrt","sqrt"]:
left,right = moveFunction(left,right,sqrFunc,f"({right})**2")
for gid,group in groups.items(): right = right.replace(gid,group)
if left == termGroup:
subEquation = groups[termGroup][1:-1]+"="+right
return solveFor(term,subEquation)
if left != term: return None
solution = f"{left}={right}".replace("†","**")
# expression clen-up
solution = re.sub(r"(?<!\w)(0\-)","-",solution)
solution = re.sub(r"1/\(1/(\w)\)",r"\g<1>",solution)
solution = re.sub(r"\(\(([^\(]*)\)\)",r"(\g<1>)",solution)
solution = re.sub(r"(?<!\w)\((\w*)\)",r"\g<1>",solution)
return solution
Пример использования:
solveFor("x","y=(a+b)*x-(math.sin(1.5)/322)") # 'x=(y+(math.sin(1.5)/322))/(a+b)'
solveFor("a","q=(a**2+b**2)*(c-d)**2") # 'a=(q/(c-d)**2-b**2)**(1/2)'
solveFor("a","c=(a**2+b**2)**(1/2)") # 'a=(c**2-b**2)**(1/2)'
solveFor("a","x=((a+b)*c-d)*(23+y)") # 'a=(x/(23+y)+d)/c-b'
sa = solveFor("a","y=-sin((x)-sqrt(a))") # 'a=(x-asin(-y))**2'
sx = solveFor("x",sa) # 'x=a**(1/2)+asin(-y)'
sy = solveFor("y",sx) # 'y=-sin(x-a**(1/2))'
Обратите внимание, что вы, вероятно, можете найти гораздо лучшие «решатели» алгебры, это простое / наивное решение.
Вот улучшенная версия класса SmartFormula, в которой для решения проблемы используется методForFor ()решение алгебры перед возвратом к приближениям Ньютона-Рафсона:
class SmartFormula:
def __init__(self, **kwargs):
self.params = kwargs
self.precision = 0.000001
self.maxIterations = 10000
self._formulas = [(f.split("=",1)[0].strip(),f) for f in self.formulas()]
terms = set(term for _,f in self._formulas for term in re.findall(r"\w+\(?",f) )
terms = [ term for term in terms if "(" not in term and not term.isdigit() ]
self._formulas += [ (term,f"{term}=solve('{term}')") for term in terms]
self(**kwargs)
def __getattr__(self, name):
if name in self.params: return self.params[name]
def __call__(self, **kwargs):
self.params = kwargs
self.moreToSolve = True
self.params["solve"] = lambda n: self.autoSolve(n)
self.resolve()
return self.params.get(self._formulas[0][0],None)
def resolve(self):
while self.moreToSolve:
self.moreToSolve = False
for param,formula in self._formulas:
if self.params.get(param,None) is not None: continue
try:
exec(formula,globals(),self.params)
if self.params.get(param,None) is not None:
self.moreToSolve = True
except: pass
def autoSolve(self, name):
for resolver in [self.algebra, self.newtonRaphson]:
for source,formula in self._formulas:
if self.params.get(source,None) is None:
continue
if not re.search(f"(^|\\W){name}($|\\W)",formula):
continue
resolver(name,source,formula)
if self.params.get(name,None) is not None:
return self.params[name]
def algebra(self, name, source, formula):
try: exec(solveFor(name,formula),globals(),self.params)
except: pass
def newtonRaphson(self, name, source,formula):
simDict = self.params.copy()
target = self.params[source]
value = target
for _ in range(self.maxIterations):
simDict[name] = value
try: exec(formula,globals(),simDict)
except: break
result = simDict[source]
resultDelta = target-result
if abs(resultDelta) < self.precision :
self.params[name] = round(value/self.precision/2)*self.precision*2
return
value += value*resultDelta/result/2
Это позволило классу примера (BodyMassIndex) избежать спецификации вычисления "weightKg = heightM**2*bmi"
, потому что решатель алгебры может понять это.Усовершенствованный класс также устраняет необходимость указывать имена терминов для автоматического решения («term =?»).
import math
class BodyMassIndex(SmartFormula):
def formulas(self):
return [
"bmi = weightKg / (heightM**2)",
"heightM = heightInches * 0.0254",
"weightKg = weightLb / 2.20462"
]
bmi = BodyMassIndex()
print("bmi",bmi(heightM=1.75,weightKg=130)) # 42.44897959183673
print("weight",bmi.weightLb) # 286.6006 (130 Kg)
bmi(bmi=42.45,weightKg=130)
print("height",bmi.heightInches) # 68.8968097135968 (1.75 Meters)
Для исходного вопроса это просто, как может быть:
class OP(SmartFormula):
def formulas(self):
return [
"result = a+b+c+d+e+f",
"a = b * c - d",
"c = e/f"
]
r = OP(b=1,d=3,e=45,f=9).result
print(r) # 65.0
f = OP(a=2,c=5,d=3,e=45,result=65).f
print(f) # 9.0
Ньютон-Рафсон не использовался ни в одном из этих вычислений, потому что алгебра решает их в приоритетном порядке, прежде чем пробовать приближения