ОК, так что новичок здесь, который работал над набором домашних заданий с оригинальным постом здесь: Как сделать маску из одного изображения, а затем перенести ее в другое?
, Первоначальная идея состояла в том, чтобы взять изображение DAPI (серое изображение) и применить его в качестве маски к изображению NPM1 (зеленое). После реализации предложенного кода от HansHirse (спасибо!) Вместе с другим кодом, который я делал для решения домашней задачи, я, наконец, получил рабочую гистограмму всех совместимых ячеек в изображении. Бит «совместимости» заключается в том, что любые ячейки, соприкасающиеся с границей, не должны учитываться. Однако мне все еще нужно найти способ получить гистограммы для каждой отдельной ячейки. Я приложил оригинальные изображения из поста тоже:
Для этого я попробовал blob_doh и еще один метод, чтобы получить сегментированные области каждой ячейки, но понятия не имел, как я могу применить эти координаты к изображению для гистограммы.
PS. Код немного грязный. Я сегментировал код так, что blob_doh находится внизу, а другой метод - это тоже отдельная часть в самом низу. Извините!
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
from skimage.feature import blob_dog, blob_log, blob_doh
from skimage.color import rgb2gray
import cv2
import mahotas as mh
import scipy
from scipy import ndimage
import matplotlib.patches as mpatches
from skimage import data
from skimage.filters import threshold_otsu
from skimage.segmentation import clear_border
from skimage.measure import label, regionprops
from skimage.morphology import closing, square
from skimage.color import label2rgb
# Read image into numpy array
image = cv2.imread("NOTREATDAPI.jpg",0)
dna = np.array(image) # must be gray-scale image
plt.show()
# Remove extraneous artifacts from image; set the threshold
dnaf = ndimage.gaussian_filter(dna, 8) #gaussian filter for general image
T = mh.thresholding.otsu(dnaf) # set threshold via mahotas otsu thresholding
theta=np.array(dnaf > T) #setting mask of values in image to calculated otsu threshold
cleared = clear_border(theta) #removes all cells that are in contact with the image border
epsilon = np.array(cleared) #final masked DAPI product
print("DAPI MASK USING GAUSSIAN FILTER AND OTSU THRESHOLDING");
plt.imshow(epsilon)
plt.show()
# Load and reset original images
image = cv2.imread("NOTREATDAPI.jpg",0) #The DAPI Image
image1 = cv2.imread("NOTREATNPM1.jpg",0) #The NPM1 Image
print("Original DAPI Image");plt.imshow(image);plt.show() #The DAPI Image
print("Original NPM1 Image");plt.imshow(image1);plt.show() #The NPM1 Image
# Create an array of bool of same shape as image
maskAboveThreshold = epsilon > 0 #Use mask array from above - include only values above non-masked zeros
print("Final Masked Image of NPM1"); plt.imshow(image1 *
maskAboveThreshold, cmap='gray')
plt.show()
True_NPM1= image1 * maskAboveThreshold # Final masked version of NPM1 set back to grayscale
# Create a mask using the DAPI image and binary thresholding at 25
_, mask = cv2.threshold(True_NPM1, 1, 255, cv2.THRESH_BINARY)
# Do some morphological opening to get rid of small artifacts
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN,
cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (15, 15)))
# Calculate the histogram using the NPM1 image and the obtained binary
mask
hist = cv2.calcHist([image1], [0], mask, [256], [0, 256])
# Show bar plot of calculated histogram
plt.bar(np.arange(256), np.squeeze(hist))
plt.show()
# Show mask image
plt.imshow(mask)
plt.show()
#blob_doh way of segmenting the cells ------
import cv2 as cv
from PIL import Image, ImageDraw
image10 = np.array(Image.open("OXALIDAPI.jpg"))
plt.imshow(image10)
#Convert to gaussian image with thresholds
image10 = cv2.imread("OXALIDAPI.jpg",0)
dna = np.array(image10) # gray-scale image
plt.show()
# Remove extraneous artifacts from image; set the threshold
dnaf = ndimage.gaussian_filter(dna, 8) #gaussian filter for general image
T = mh.thresholding.otsu(dnaf) # set threshold via mahotas otsu thresholding
theta=np.array(dnaf > T) #setting mask of values in image to calculated otsu threshold
cleared = clear_border(theta) #removes all cells that are in contact with the image border
image = np.array(cleared) #final masked DAPI product
#print("DAPI MASK USING GAUSSIAN FILTER AND OTSU THRESHOLDING");
plt.imshow(epsilon)
plt.show()
# Convert image to grayscale
image_gray = rgb2gray(image)
plt.imshow(image_gray,cmap="gray")
def plot_blobs(img,blobs):
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.imshow(img, interpolation='nearest')
for blob in blobs:
y, x, r = blob
c = plt.Circle((x, y), r*1.25, color="red", linewidth=1, fill=False)
ax.add_patch(c)
# blob_doh
blobs_doh = blob_doh(image_gray, min_sigma=10, max_sigma=256,
threshold=.025)
plot_blobs(image,blobs_doh)
#get blob coordinates
def filter_blobs(blobs,r_cutoff=5):
new_blobs = []
for b in blobs:
if b[2] > r_cutoff:
new_blobs.append(b)
return new_blobs
new_blobs = filter_blobs(blobs_doh)
#plot_blobs(image,new_blobs)
print(new_blobs)
#Other method of segmenting cells. maybe useful?
yeta = cv2.imread("NOTREATDAPI.jpg",0)
image = np.array(yeta)
# apply threshold
dnaf = ndimage.gaussian_filter(image, 8)
T = mh.thresholding.otsu(dnaf) # set threshold
plt.imshow(dnaf > T)
epsilon=np.array(dnaf > T)
plt.show()
# remove artifacts connected to image border
cleared = clear_border(epsilon)
# label image regions
label_image = label(cleared)
image_label_overlay = label2rgb(label_image, image=image)
fig, ax = plt.subplots(figsize=(6, 6))
ax.imshow(image_label_overlay)
for region in regionprops(label_image):
# take regions with large enough areas
if region.area >= 50:
# draw rectangle around individual cells
minr, minc, maxr, maxc = region.bbox
rect = mpatches.Rectangle((minc, minr), maxc - minc, maxr - minr,
fill=False, edgecolor='red', linewidth=0.5)
ax.add_patch(rect)
#ax.set_axis_off()
#plt.tight_layout()
plt.show()
howzer=np.array(image_label_overlay)