Я следую инструкциям здесь: https://blog.hyperiondev.com/index.php/2019/02/18/machine-learning/
У меня точно такой же код, который использует автор, но я все же поделюсь им ниже ...
train_data = scipy.io.loadmat('train_32x32.mat')
X = train_data['X']
y = train_data['y']
img_index = 24
X = X.reshape(X.shape[0]*X.shape[1]*X.shape[2],X.shape[3]).T
y = y.reshape(y.shape[0],)
X, y = shuffle(X, y, random_state=42)
clf = RandomForestClassifier(n_estimators=10, n_jobs=1)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
clf.fit(X_train, y_train) <-----------(MEMORY ERROR)
preds = clf.predict(X_test)
print("Accuracy:", accuracy_score(y_test,preds))
Набор данных, который я использую, представляет собой словарь чисел и рисунков чисел.Каждый раз, когда я добираюсь до линии, которую я указал выше, я получаю MemoryError
.Полное отслеживание ошибок приведено ниже:
Traceback (most recent call last):
File "C:/Users/jack.walsh/Projects/img_recog/main.py", line 22, in <module>
clf.fit(X_train, y_train)
File "C:\Users\jack.walsh\AppData\Local\Programs\Python\Python37-32\lib\site-packages\sklearn\ensemble\forest.py", line 249, in fit
X = check_array(X, accept_sparse="csc", dtype=DTYPE)
File "C:\Users\jack.walsh\AppData\Local\Programs\Python\Python37-32\lib\site-packages\sklearn\utils\validation.py", line 496, in check_array
array = np.asarray(array, dtype=dtype, order=order)
File "C:\Users\jack.walsh\AppData\Local\Programs\Python\Python37-32\lib\site-packages\numpy\core\numeric.py", line 538, in asarray
return array(a, dtype, copy=False, order=order)
MemoryError
Я запускал Resource Monitor параллельно с ним и понял, что моя используемая память никогда не превышает 30%.Дайте мне знать, как я могу обойти это без изменения результатов!
X.shape = (73257, 3072)
X_train.shape = (51279, 3072)
У меня 16 ГБ ОЗУ на этой машине.