Я пытаюсь реализовать пользовательский генератор данных для модели с 3 входами и одним выходом, который работает с текстовыми данными, следующим образом:
# dummy model
input_1 = Input(shape=(None,))
input_2 = Input(shape=(None,))
input_3 = Input(shape=(None,))
combined = Concatenate(axis=-1)([input_1, input_2, input_3])
...
dense_1 = Dense(10, activation='relu')(combined)
output_1 = Dense(1, activation='sigmoid')(dense_1)
model = Model([input_1, input_2, input_3], output_1)
print(model.summary())
#Compile and fit_generator
model.compile(optimizer='adam', loss='binary_crossentropy')
train_data_gen = Generator([x1_train, x2_train, x3_train], y_train, batch_size)
test_data_gen = Generator([x1_test, x2_test, x3_test], y_test, batch_size)
model.fit_generator(generator=train_data_gen, validation_data = test_data_gen, epochs=epochs, verbose=1)
Код генератора данных, который я нашел здесь , мне интересно, как изменить его так, чтобы он принимал несколько входных тензоров.
class Generator(Sequence):
# Class is a dataset wrapper for better training performance
def __init__(self, x_set, y_set, batch_size=256):
self.x, self.y = x_set, y_set
self.batch_size = batch_size
self.indices = np.arange(self.x.shape[0])
def __len__(self):
return math.floor(self.x.shape[0] / self.batch_size)
def __getitem__(self, idx):
inds = self.indices[idx * self.batch_size:(idx + 1) * self.batch_size]
batch_x = self.x[inds]
batch_y = self.y[inds]
return batch_x, batch_y
def on_epoch_end(self):
np.random.shuffle(self.indices)