Я пытаюсь вписать значения NA в растр временного ряда. Вот воспроизводимый пример моих данных:
library(raster)
library(rgdal)
library(doParallel)
library(foreach)
r1 <- r2 <- r3 <- r4 <- r5 <- raster(nrow=100, ncol=100)
values(r1) <- runif(ncell(r1))
values(r2) <- runif(ncell(r2))
values(r3) <- runif(ncell(r3))
values(r4) <- runif(ncell(r4))
values(r5) <- runif(ncell(r5))
s <- stack(r1, r2, r3, r4, r5)
time_series <- brick(s)
time_series[1, 30][2] <- NA
time_series[3, 20][3] <- NA
time_series[5, 10][5] <- NA
time_series[8, 40][4] <- NA
Есть пакеты, такие как gapfill, но я нашел их слишком медленными для моей задачи. Я нашел другой метод здесь, как в ответе:
https://gis.stackexchange.com/questions/279354/ndvi-time-series-with-missing-values
по: https://gis.stackexchange.com/users/8520/jeffrey-evans
Я хочу преобразовать цикл for в foreach, чтобы рассчитать его для больших изображений. Вот код с циклами for:
impute.loess <- function(y, x.length = NULL, s = 0.80,
smooth.data = FALSE, ...) {
if(is.null(x.length)) { x.length = length(y) }
options(warn = -1)
x <- 1:x.length
if (all(is.na(y))) {
return(y)
} else {
p <- loess(y ~ x, span = s, data.frame(x = x, y = y))
if(smooth.data == TRUE) {
y <- predict(p, x)
} else {
na.idx <- which( is.na(y) )
if( length(na.idx) > 1 ) {
y[na.idx] <- predict(p, data.frame(x = na.idx))
}
}
return(y)
}
}
time_series_new <- time_series
time_series_new[] <- NA
for (rl in 1:nrow(time_series)) {
v <- getValues(time_series, rl, 1)
time_series_new[rl,] <- as.matrix(t(apply(v, MARGIN=1, FUN=impute.loess)))
}
Альтернатива Foreach, которую я пробовал, такова:
time_series_new2 <- time_series
time_series_new2[] <- NA
cl <- parallel::makeCluster(detectCores()-1)
doParallel::registerDoParallel(cl)
time_series_new2 <- foreach (rl = 1:nrow(time_series),
.packages = "raster",
.combine = 'rbind') %dopar% {
v <- getValues(time_series, rl, 1)
time_series_new[rl,] <- as.matrix(t(apply(v,
MARGIN=1, FUN=impute.loess)))
}
parallel::stopCluster(cl)
Однако вот в чем разница:
> class(time_series_new)
[1] "RasterBrick"
attr(,"package")
[1] "raster"
> class(time_series_new2)
[1] "matrix"
Если я не назначаю цикл foreach объекту, он просто экспортирует результат. Я хочу обновить растровый объект в конце, но не смог найти решение моей проблемы.
Я не смог найти способ установки значений матрицы для растрового объекта - возможно, заданные значения не работали, так как размеры были такими, как:
> dim(time_series_new)
[1] 100 100 5
> dim(time_series_new2)
[1] 10000 5
Я знаю, что цикл foreach работает по-другому. Есть ли способ обновить объект time_series_new2 внутри цикла foreach, чтобы в конце я мог получить обновленный растровый объект?
EDIT:
setValues () действительно работает! как:
time_series_new3 <- time_series
time_series_new3[] <- NA #empty raster object
time_series_new3 <- setValues(time_series_new3, time_series_new2) #filled with matrix rendered from foreach loop
> time_series_new3
class : RasterBrick
dimensions : 100, 100, 10000, 5 (nrow, ncol, ncell, nlayers)
resolution : 3.6, 1.8 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
source : memory
names : layer.1, layer.2, layer.3, layer.4, layer.5
min values : 1.468023e-04, 3.525158e-04, 9.689084e-05, 5.349121e-05, 4.214607e-05
max values : 0.9999564, 0.9999854, 0.9997795, 0.9999780, 0.9997880
> time_series_new2
class : RasterBrick
dimensions : 100, 100, 10000, 5 (nrow, ncol, ncell, nlayers)
resolution : 3.6, 1.8 (x, y)
extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
crs : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0
source : memory
names : layer.1, layer.2, layer.3, layer.4, layer.5
min values : 1.468023e-04, 3.525158e-04, 9.689084e-05, 5.349121e-05, 4.214607e-05
max values : 0.9999564, 0.9999854, 0.9997795, 0.9999780, 0.9997880
> all.equal(time_series_new2, time_series_new3)
[1] TRUE
Тем не менее, я хотел бы знать об обновлении в foreach.