Я выразил уважение сети CNN к одному исследовательскому документу. Как работает Аккумулятор в этом документе? - PullRequest
0 голосов
/ 28 апреля 2019

Я создал сеть CNN по одному исследовательскому документу (ссылка на статью: https://ieeexplore.ieee.org/abstract/document/7254176), Я не могу понять, как работает аккумулятор? И как представить его с помощью кода?

как можно дополнить код Python уважением к исследовательской работе?

следующие два изображения содержат информацию о сети CNN:

Изображение1: overview of the CNN network model respect to the paper

Image2: CNN network description

Код Python:

import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
import numpy as np
import cv2
import os

path1="/home/sanjay/CASIA_B90PerfectCentrallyAlinged_Resized_with_126by126_Energy_Image/"
#path1="/home/sanjay/CASIA_B90PerfectCentrallyAlinged_CODEI_OneCycle_frames-20_Resized_with_140by140_Energy_Image/"
all_images = []
all_labels = []
subjects = os.listdir(path1)
numberOfSubject = len(subjects)
print('Number of Subjects: ', numberOfSubject)
for number1 in range(0, numberOfSubject):  # numberOfSubject
    path2 = (path1 + subjects[number1] + '/')
    sequences = os.listdir(path2);
    numberOfsequences = len(sequences)
    for number2 in range(4, numberOfsequences):
        path3 = path2 + sequences[number2]
        img = cv2.imread(path3 , 0)
        img = img.reshape(126, 126, 1)
        all_images.append(img)
        all_labels.append(number1)
x_train = np.array(all_images)
y_train = np.array(all_labels)
y_train = keras.utils.to_categorical(y_train)


all_images = []
all_labels = []

for number1 in range(0, numberOfSubject):  # numberOfSubject
    path2 = (path1 + subjects[number1] + '/')
    sequences = os.listdir(path2);
    numberOfsequences = len(sequences)
    for number2 in range(0, 4):
        path3 = path2 + sequences[number2]
        img = cv2.imread(path3 , 0)
        img = img.reshape(126, 126, 1)
        all_images.append(img)
        all_labels.append(number1)
x_test = np.array(all_images)
y_test = np.array(all_labels)
y_test = keras.utils.to_categorical(y_test)

batch_size =128
num_classes = 123
epochs = 120

model = Sequential()
model.add(Conv2D(16, kernel_size=(7,7), activation='tanh', input_shape=(126,126,1)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, kernel_size=(7,7), activation='tanh'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(256, kernel_size=(7,7), activation='tanh'))
model.add(MaxPooling2D(pool_size=(3, 3),strides=(2, 2)))
model.add(Conv2D(256, kernel_size=(6,6), activation='tanh',strides=(2, 2)))
#model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Flatten())
#model.add(Dense(1000, activation='tanh'))
model.add(Dense(123, activation='softmax'))
model.summary()

model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])

model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...