Используя данные, вы можете удалить дублирующиеся пары в данных, как это
import pandas as pd
cols = ['gene1','gene2','score']
data = [['EPB41L4B', 'PGC',0.496713249],
['PGC','EPB41L4B',0.496713249],
['CHGA','MT1G',0.496751983],
['MT1G','CHGA',0.496751983],
['AEBP1','FCER1G',0.497061368 ],
['FCER1G','AEBP1',0.497061368],
['ADTRP','CAPN9',0.497122603],
['CAPN9','ADTRP',0.497122603],
['FAM189A2','GLUL',0.49721763],
['GLUL','FAM189A2',0.49721763],
['CA9','DUOX1',0.497233294],
['DUOX1','CA9',0.497233294],
['EDNRA','MSLN',0.497267565],
['MSLN','EDNRA',0.497267565],
['HRASLS2','LIPF',0.497581499],
['LIPF','HRASLS2',0.497581499],
['EPB41L4B','NEDD4L',0.497613643],
['NEDD4L','EPB41L4B',0.497613643]]
df = pd.DataFrame(data,columns=cols)
df = df[df['gene1'] < df['gene2']]
print(df)
Который производит вывод как это
gene1 gene2 score
0 EPB41L4B PGC 0.496713
2 CHGA MT1G 0.496752
4 AEBP1 FCER1G 0.497061
6 ADTRP CAPN9 0.497123
8 FAM189A2 GLUL 0.497218
10 CA9 DUOX1 0.497233
12 EDNRA MSLN 0.497268
14 HRASLS2 LIPF 0.497581
16 EPB41L4B NEDD4L 0.497614