Когда я запускаю tenorflow.Session.run (tf.summary.merge_all ()), он там зависает.
Я делаю kaggle и хочу использовать предварительно обученную модель в качестве позвоночника позвоночника нашей модели. Поэтому я импортирую мета-график предварительно обученной модели и добавляю новые загруженные узлы в загруженный график, чтобы соответствовать форме аннотации целевого набора данных. Все идет хорошо, пока я не попытаюсь визуализировать тренировочный процесс с помощью тензорной доски. Он застрял на sess.run (tf.summary.merge_all ()).
Хотя я не пробовал это солютин ! Кажется, это решение не в моем случае.
Если это так, как я могу переписать свой код в соответствии с этим решением? Пожалуйста, дайте мне полный код. Спасибо!
Моя часть определения графа:
g1 = tf.Graph()
with g1.as_default():
with tf.name_scope("global_step"):
global_steps = tf.Variable(0, trainable=False)
with tf.name_scope("x1"):
x1 = tf.placeholder(dtype=tf.float32, shape=[None, 160, 160, 3], name='x1')
with tf.name_scope("x2"):
x2 = tf.placeholder(dtype=tf.float32, shape=[None, 160, 160, 3], name='x2')
with tf.name_scope("y_label"):
y = tf.placeholder(dtype=tf.float32, shape=[None, 1], name='y')
with tf.variable_scope("model") as scope:
with tf.name_scope("model_for_x1"):
saver1 = tf.train.import_meta_graph('./model/model.meta')
scope.reuse_variables()
with tf.name_scope("model_for_x2"):
saver2 = tf.train.import_meta_graph('./model/model.meta')
# extract the output from pre-trained model
.
.
.
.
.(omit some codes)
.
.
.
.
# final output
with tf.name_scope("final_output"):
final_output = tf.identity(FC2, 'final_output')
# loss function
with tf.name_scope("Loss"):
loss_per = tf.nn.sigmoid_cross_entropy_with_logits(
labels=y,
logits=final_output,
name='loss_per')
loss = tf.reduce_mean(loss_per, name='loss_average')
# Optimizer
with tf.name_scope("Optimizer"):
optimizer = tf.train.AdamOptimizer(0.00001, name='Adam2') # already has a adam optimizer, so rename it
train_step = optimizer.minimize(loss, global_step=global_steps)
# visualization
with tf.name_scope("Summary"):
loss_summary = tf.summary.scalar("loss", loss)
merged_summary = tf.summary.merge_all()
Моя учебная часть:
with tf.Session(graph=g1) as sess:
train_writer = tf.summary.FileWriter("./logs" + "/train", sess.graph)
val_writer = tf.summary.FileWriter("./logs" + "/val")
tf.global_variables_initializer().run() # initialize the weights
saver1.restore(sess, './model/model') # cover the weights by pre-trained model
saver2.restore(sess, './model/model') # cover the weights by pre-trained model
print("*****************Start Training!!!******************")
for epochNum in range(epochs):
valid_los, summary = sess.run([loss, loss_summary], <<------ hang here, if I threw loss_summary away, it will run fluently.
feed_dict={
x1: valid_batch_data[0],
x2: valid_batch_data[1],
y: valid_annotation})
val_writer.add_summary(summary, global_steps)
for iterNum in range(len(train)//batch_size):
test_batch_data, test_annotation = next(gen(train, train_person_to_images_map, batch_size, (160, 160)))
print('**********************************')
train_los, _, summary = sess.run([loss, train_step, merged_summary],
feed_dict={
x1: test_batch_data[0],
x2: test_batch_data[1],
y: np.reshape(test_annotation, (batch_size, 1))})
train_writer.add_summary(summary, global_steps)
print('epoch: %d, iteration: %d, train_loss_per_iter: %f, valid_loss_per_epoch: %f' % (epochNum + 1, iterNum + 1, valid_los))
train_writer.close()
val_writer.close()
Там нет никаких сообщений об ошибках, а только зависать там!