При попытке настроить свой собственный конвейер kubeflow я столкнулся с проблемой, когда один шаг завершен, и результаты должны быть сохранены.После завершения шага kubeflow всегда выдает ошибку с сообщением This step is in Error state with this message: failed to save outputs: Error response from daemon: No such container: <container-id>
Сначала я подумал, что допустил бы ошибку с моим конвейером, но то же самое с предыдущими примерами конвейера, например для "[Sample]Основное - условное выполнение «Я получаю это сообщение после того, как первый шаг (перевернутая монета) завершен.
Основной контейнер показывает вывод:
heads
Так что, похоже, он успешно выполнен.
Контейнер ожидания показывает следующий вывод:
time="2019-06-07T11:41:35Z" level=info msg="Creating a docker executor"
time="2019-06-07T11:41:35Z" level=info msg="Executor (version: v2.2.0, build_date: 2018-08-30T08:52:54Z) initialized with template:\narchiveLocation:\n s3:\n accessKeySecret:\n key: accesskey\n name: mlpipeline-minio-artifact\n bucket: mlpipeline\n endpoint: minio-service.kubeflow:9000\n insecure: true\n key: artifacts/conditional-execution-pipeline-vmdhx/conditional-execution-pipeline-vmdhx-2104306666\n secretKeySecret:\n key: secretkey\n name: mlpipeline-minio-artifact\ncontainer:\n args:\n - python -c \"import random; result = 'heads' if random.randint(0,1) == 0 else 'tails';\n print(result)\" | tee /tmp/output\n command:\n - sh\n - -c\n image: python:alpine3.6\n name: \"\"\n resources: {}\ninputs: {}\nmetadata: {}\nname: flip-coin\noutputs:\n artifacts:\n - name: mlpipeline-ui-metadata\n path: /mlpipeline-ui-metadata.json\n - name: mlpipeline-metrics\n path: /mlpipeline-metrics.json\n parameters:\n - name: flip-coin-output\n valueFrom:\n path: /tmp/output\n"
time="2019-06-07T11:41:35Z" level=info msg="Waiting on main container"
time="2019-06-07T11:41:36Z" level=info msg="main container started with container ID: 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c"
time="2019-06-07T11:41:36Z" level=info msg="Starting annotations monitor"
time="2019-06-07T11:41:36Z" level=info msg="docker wait 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c"
time="2019-06-07T11:41:36Z" level=info msg="Starting deadline monitor"
time="2019-06-07T11:41:37Z" level=error msg="`docker wait 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c` failed: Error response from daemon: No such container: 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c\n"
time="2019-06-07T11:41:37Z" level=info msg="Main container completed"
time="2019-06-07T11:41:37Z" level=info msg="No sidecars"
time="2019-06-07T11:41:37Z" level=info msg="Saving output artifacts"
time="2019-06-07T11:41:37Z" level=info msg="Annotations monitor stopped"
time="2019-06-07T11:41:37Z" level=info msg="Saving artifact: mlpipeline-ui-metadata"
time="2019-06-07T11:41:37Z" level=info msg="Archiving 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c:/mlpipeline-ui-metadata.json to /argo/outputs/artifacts/mlpipeline-ui-metadata.tgz"
time="2019-06-07T11:41:37Z" level=info msg="sh -c docker cp -a 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c:/mlpipeline-ui-metadata.json - | gzip > /argo/outputs/artifacts/mlpipeline-ui-metadata.tgz"
time="2019-06-07T11:41:37Z" level=info msg="Archiving completed"
time="2019-06-07T11:41:37Z" level=info msg="Creating minio client minio-service.kubeflow:9000 using static credentials"
time="2019-06-07T11:41:37Z" level=info msg="Saving from /argo/outputs/artifacts/mlpipeline-ui-metadata.tgz to s3 (endpoint: minio-service.kubeflow:9000, bucket: mlpipeline, key: artifacts/conditional-execution-pipeline-vmdhx/conditional-execution-pipeline-vmdhx-2104306666/mlpipeline-ui-metadata.tgz)"
time="2019-06-07T11:41:37Z" level=info msg="Successfully saved file: /argo/outputs/artifacts/mlpipeline-ui-metadata.tgz"
time="2019-06-07T11:41:37Z" level=info msg="Saving artifact: mlpipeline-metrics"
time="2019-06-07T11:41:37Z" level=info msg="Archiving 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c:/mlpipeline-metrics.json to /argo/outputs/artifacts/mlpipeline-metrics.tgz"
time="2019-06-07T11:41:37Z" level=info msg="sh -c docker cp -a 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c:/mlpipeline-metrics.json - | gzip > /argo/outputs/artifacts/mlpipeline-metrics.tgz"
time="2019-06-07T11:41:37Z" level=info msg="Archiving completed"
time="2019-06-07T11:41:37Z" level=info msg="Creating minio client minio-service.kubeflow:9000 using static credentials"
time="2019-06-07T11:41:37Z" level=info msg="Saving from /argo/outputs/artifacts/mlpipeline-metrics.tgz to s3 (endpoint: minio-service.kubeflow:9000, bucket: mlpipeline, key: artifacts/conditional-execution-pipeline-vmdhx/conditional-execution-pipeline-vmdhx-2104306666/mlpipeline-metrics.tgz)"
time="2019-06-07T11:41:37Z" level=info msg="Successfully saved file: /argo/outputs/artifacts/mlpipeline-metrics.tgz"
time="2019-06-07T11:41:37Z" level=info msg="Saving output parameters"
time="2019-06-07T11:41:37Z" level=info msg="Saving path output parameter: flip-coin-output"
time="2019-06-07T11:41:37Z" level=info msg="[sh -c docker cp -a 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c:/tmp/output - | tar -ax -O]"
time="2019-06-07T11:41:37Z" level=error msg="`[sh -c docker cp -a 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c:/tmp/output - | tar -ax -O]` stderr:\nError: No such container:path: 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c:/tmp/output\ntar: This does not look like a tar archive\ntar: Exiting with failure status due to previous errors\n"
time="2019-06-07T11:41:37Z" level=info msg="Alloc=4338 TotalAlloc=11911 Sys=10598 NumGC=4 Goroutines=11"
time="2019-06-07T11:41:37Z" level=fatal msg="exit status 2\ngithub.com/argoproj/argo/errors.Wrap\n\t/root/go/src/github.com/argoproj/argo/errors/errors.go:87\ngithub.com/argoproj/argo/errors.InternalWrapError\n\t/root/go/src/github.com/argoproj/argo/errors/errors.go:70\ngithub.com/argoproj/argo/workflow/executor/docker.(*DockerExecutor).GetFileContents\n\t/root/go/src/github.com/argoproj/argo/workflow/executor/docker/docker.go:40\ngithub.com/argoproj/argo/workflow/executor.(*WorkflowExecutor).SaveParameters\n\t/root/go/src/github.com/argoproj/argo/workflow/executor/executor.go:343\ngithub.com/argoproj/argo/cmd/argoexec/commands.waitContainer\n\t/root/go/src/github.com/argoproj/argo/cmd/argoexec/commands/wait.go:49\ngithub.com/argoproj/argo/cmd/argoexec/commands.glob..func4\n\t/root/go/src/github.com/argoproj/argo/cmd/argoexec/commands/wait.go:19\ngithub.com/argoproj/argo/vendor/github.com/spf13/cobra.(*Command).execute\n\t/root/go/src/github.com/argoproj/argo/vendor/github.com/spf13/cobra/command.go:766\ngithub.com/argoproj/argo/vendor/github.com/spf13/cobra.(*Command).ExecuteC\n\t/root/go/src/github.com/argoproj/argo/vendor/github.com/spf13/cobra/command.go:852\ngithub.com/argoproj/argo/vendor/github.com/spf13/cobra.(*Command).Execute\n\t/root/go/src/github.com/argoproj/argo/vendor/github.com/spf13/cobra/command.go:800\nmain.main\n\t/root/go/src/github.com/argoproj/argo/cmd/argoexec/main.go:15\nruntime.main\n\t/usr/local/go/src/runtime/proc.go:198\nruntime.goexit\n\t/usr/local/go/src/runtime/asm_amd64.s:2361"
Таким образом, похоже, что есть проблема либо с kubeflow, либо с моим демоном docker.Вывод kubectl describe pods
для созданного модуля выглядит следующим образом:
Name: conditional-execution-pipeline-vmdhx-2104306666
Namespace: kubeflow
Priority: 0
PriorityClassName: <none>
Node: root-nuc8i5beh/9.233.5.90
Start Time: Fri, 07 Jun 2019 13:41:29 +0200
Labels: workflows.argoproj.io/completed=true
workflows.argoproj.io/workflow=conditional-execution-pipeline-vmdhx
Annotations: workflows.argoproj.io/node-message:
Error response from daemon: No such container: 7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c
workflows.argoproj.io/node-name: conditional-execution-pipeline-vmdhx.flip-coin
workflows.argoproj.io/template:
{"name":"flip-coin","inputs":{},"outputs":{"parameters":[{"name":"flip-coin-output","valueFrom":{"path":"/tmp/output"}}],"artifacts":[{"na...
Status: Failed
IP: 10.1.1.30
Controlled By: Workflow/conditional-execution-pipeline-vmdhx
Containers:
main:
Container ID: containerd://7e3064415736db584cac5598a2b2a28728e11c03014ac67a05d008ad8119b13c
Image: python:alpine3.6
Image ID: docker.io/library/python@sha256:766a961bf699491995cc29e20958ef11fd63741ff41dcc70ec34355b39d52971
Port: <none>
Host Port: <none>
Command:
sh
-c
Args:
python -c "import random; result = 'heads' if random.randint(0,1) == 0 else 'tails'; print(result)" | tee /tmp/output
State: Terminated
Reason: Completed
Exit Code: 0
Started: Fri, 07 Jun 2019 13:41:35 +0200
Finished: Fri, 07 Jun 2019 13:41:35 +0200
Ready: False
Restart Count: 0
Environment: <none>
Mounts:
/var/run/secrets/kubernetes.io/serviceaccount from pipeline-runner-token-xh2p7 (ro)
wait:
Container ID: containerd://f0449dc70c0a651c09aeb883edda9ce0ec5e415fa15a5468fe5b360fb06637c2
Image: argoproj/argoexec:v2.2.0
Image ID: docker.io/argoproj/argoexec@sha256:eea81e0b0d8899a0b7f9815c9c7bd89afa73ab32e5238430de82342b3bb7674a
Port: <none>
Host Port: <none>
Command:
argoexec
Args:
wait
State: Terminated
Reason: Error
Exit Code: 1
Started: Fri, 07 Jun 2019 13:41:35 +0200
Finished: Fri, 07 Jun 2019 13:41:37 +0200
Ready: False
Restart Count: 0
Environment:
ARGO_POD_NAME: conditional-execution-pipeline-vmdhx-2104306666 (v1:metadata.name)
Mounts:
/argo/podmetadata from podmetadata (rw)
/var/lib/docker from docker-lib (ro)
/var/run/docker.sock from docker-sock (ro)
/var/run/secrets/kubernetes.io/serviceaccount from pipeline-runner-token-xh2p7 (ro)
Conditions:
Type Status
Initialized True
Ready False
ContainersReady False
PodScheduled True
Volumes:
podmetadata:
Type: DownwardAPI (a volume populated by information about the pod)
Items:
metadata.annotations -> annotations
docker-lib:
Type: HostPath (bare host directory volume)
Path: /var/lib/docker
HostPathType: Directory
docker-sock:
Type: HostPath (bare host directory volume)
Path: /var/run/docker.sock
HostPathType: Socket
pipeline-runner-token-xh2p7:
Type: Secret (a volume populated by a Secret)
SecretName: pipeline-runner-token-xh2p7
Optional: false
QoS Class: BestEffort
Node-Selectors: <none>
Tolerations: node.kubernetes.io/not-ready:NoExecute for 300s
node.kubernetes.io/unreachable:NoExecute for 300s
Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Scheduled 8m1s default-scheduler Successfully assigned kubeflow/conditional-execution-pipeline-vmdhx-2104306666 to root-nuc8i5beh
Normal Pulling 8m1s kubelet, root-nuc8i5beh Pulling image "python:alpine3.6"
Normal Pulled 7m56s kubelet, root-nuc8i5beh Successfully pulled image "python:alpine3.6"
Normal Created 7m56s kubelet, root-nuc8i5beh Created container main
Normal Started 7m55s kubelet, root-nuc8i5beh Started container main
Normal Pulled 7m55s kubelet, root-nuc8i5beh Container image "argoproj/argoexec:v2.2.0" already present on machine
Normal Created 7m55s kubelet, root-nuc8i5beh Created container wait
Normal Started 7m55s kubelet, root-nuc8i5beh Started container wait
Итак, возможно, существует проблема с образом контейнера argoexec?Я вижу, что он пытается смонтировать /var/run/docker.sock.Когда я пытаюсь прочитать этот файл с помощью cat
, я получаю сообщение «Нет такого устройства или адреса», хотя я могу видеть файл с ls /var/run
.Когда я пытаюсь открыть его с помощью vi
, в нем упоминается, что в разрешениях отказано, поэтому я не вижу внутри файла.Это обычное поведение с этим файлом или кажется, что с ним есть какие-то проблемы?
Я был бы очень признателен за любую помощь, которую смогу получить!Спасибо, ребята!