Ошибка POSIXlt при импорте datetime в R - PullRequest
0 голосов
/ 29 апреля 2019

Я импортирую несколько CSV-файлов в Rstudio, в которых есть столбцы, содержащие дату и время (первоначально созданные в пандах).Файлы импортируются без проблем, но когда я пытаюсь объединить их с rbind, я получаю сообщение об ошибке:

Error in as.POSIXlt.character(x, tz, ...) : 
  character string is not in a standard unambiguous format

Я попытался установить часовой пояс, но это не работает.

Ниже приведен код, показывающий класс и то, как выглядит объект.

class(dd1$timestamp_datetime)
[1] "POSIXct" "POSIXt" 

glimpse(dd1$timestamp_datetime)
 POSIXct[1:10923], format: "2018-04-21 15:30:53" "2018-01-22 08:00:12" "2018-11-16 09:50:13" "2018-07-28 06:30:18" "2018-04-17 18:20:50"

Формат выглядит хорошо для меня, но не для R. Я планирую использовать этот набор данных для временных рядованализ, поэтому часть даты и времени важна.Что я должен сделать, чтобы это работало?

Обновление: вот оно.Это как-то связано с тем, что числа все разные?Раньше они были указателем, когда это было в пандах.Поможет ли удаление этого ряда?

 glimpse(dd1$X1)
 num [1:10923] 2 72 82 96 102 103 109 115 125 127 ...
> glimpse(dd2$X1)
 chr [1:74615] "0" "1" "6" "7" "8" "9" "10" "11" "12" "13" "15" "16" "18" "19" "20" "21" "23" "25" "26" "27" "28" "30" "34" ...
> glimpse(dd3$X1)
 chr [1:51843] "4" "6" "10" "13" "14" "15" "16" "22" "24" "27" "30" "33" "34" "35" "36" "38" "39" "41" "42" "49" "50" "51" ...
> glimpse(dd4$X1)
 num [1:48747] 2 3 5 7 9 12 17 18 20 21 ...

Добавлен дополнительный код:

dput(head(dd1))
structure(list(X1 = c(2, 72, 82, 96, 102, 103), text = c("RT @ThatTimWalker: Can’t help but think the hostile environment the Brextremists are creating is for themselves.", 
"RT @ThatTimWalker: The sad thing is if this country hadn’t been conned by Brextremists we’d be a very prosperous country now and respected…", 
"RT @Kevin_Maguire: Update on Brextremist monied elite:\nJames Dyson: Building factory in Singapore\nJim Ratcliffe: Moving to Monaco\nArron Ban…", 
"RT @ThatTimWalker: Why are the new revelations of dirty tricks and lies by the Brextremist groups during the EU Referendum considered stron…", 
"RT @EK_EuropeanMove: #Kipper #Leaver or #Brextremist hard to tell which cannot tell the difference between the extreme right nationalist id…", 
"RT @mrjamesob: May clearly thought that Brextremists would eventually be forced by the sheer weight of evidence & events to acknowledge rea…"
), timestamp_datetime = structure(c(1524324653.333, 1516608012.083, 
1542361813.274, 1532759418.257, 1523989250.856, 1506776455.518
), class = c("POSIXct", "POSIXt"), tzone = "UTC"), tweet_id = c(987715301230903296, 
955349361969393664, 1063368633320132608, 1023093269490790400, 
986308521280106496, 914112824942657536), keyword = c("brextremist", 
"brextremist", "brextremist", "brextremist", "brextremist", "brextremist"
)), row.names = c(NA, -6L), problems = structure(list(row = c(6721L, 
6722L, 6722L, 6723L, 6723L, 6723L, 8175L, 8176L, 8176L, 8177L, 
8177L, 8178L, 8178L, 8179L, 8179L, 8179L, 10805L, 10806L, 10806L, 
10806L), col = c(NA, "X1", NA, "X1", "timestamp_datetime", NA, 
NA, "X1", NA, "X1", NA, "X1", NA, "X1", "timestamp_datetime", 
NA, NA, "X1", "timestamp_datetime", NA), expected = c("4 columns", 
"a double", "4 columns", "a double", "date like ", "4 columns", 
"4 columns", "a double", "4 columns", "a double", "4 columns", 
"a double", "4 columns", "a double", "date like ", "4 columns", 
"4 columns", "a double", "date like ", "4 columns"), actual = c("2 columns", 
"#MacronPresident", "1 columns", , "861526132977434624", 
"3 columns", "2 columns", "Blame Remainers", "1 columns", "Blame Scotland", 
"1 columns", "Blame Ireland", "1 columns", "But never blame #PartybeforeCountry self serving #Brextremist  #Tories", 
"970756341433360385", "3 columns", "2 columns", "Ha..  You Brextremists are doing that brah.  Be an adult and accept the consequences of your decision", 
"803893962457153536", "3 columns"), file = c("'brextrem_only2.csv'", 
"'brextrem_only2.csv'", "'brextrem_only2.csv'", "'brextrem_only2.csv'", 
"'brextrem_only2.csv'", "'brextrem_only2.csv'", "'brextrem_only2.csv'", 
"'brextrem_only2.csv'", "'brextrem_only2.csv'", "'brextrem_only2.csv'", 
"'brextrem_only2.csv'", "'brextrem_only2.csv'", "'brextrem_only2.csv'", 
"'brextrem_only2.csv'", "'brextrem_only2.csv'", "'brextrem_only2.csv'", 
"'brextrem_only2.csv'", "'brextrem_only2.csv'", "'brextrem_only2.csv'", 
"'brextrem_only2.csv'")), row.names = c(NA, -20L), class = c("tbl_df", 
"tbl", "data.frame")), class = c("tbl_df", "tbl", "data.frame"
))

dput(head(dd2))
structure(list(X1 = c("0", "1", "6", "7", "8", "9"), text = c("@Bigandybruce @curtislauraj @davidschneider @daveleaper @Sean_x_Larkin The average remoaner has yet to have their b… , 
"RT @2tweetaboutit: Remoaner Emily Thornberry slapped down for trying to delay and complicate Brexit talks, 
"RT @henrybutcher56: #Marr Marrs reference to Vince Cable as “remoaner in chief” once more exposes the disgraceful BBC news editorial bias t…", 
"@jacquep @BrexitJustice Regarde:Not what remoaners want hear, more good news!", 
"RT @CllrBSilvester: Two traitors who think they know better than the 17.4m.\nThe arrogance of the #REMOANERS is breathtaking.\nIf they think…", 
"RT @arhselk: Great Tweet!Me thinks remoaner’s retweets will be as scarce as an unemployed financial expert living in London. “Project Pathe…"
), timestamp_datetime = c("2017-12-29 15:30:06.111", "2016-10-11 04:27:59.027", 
"2018-04-30 10:50:30.577", "2016-09-02 13:14:53.566", "2018-07-20 21:10:40.279", 
"2018-08-14 19:30:24.355"), tweet_id = c(946765274354765824, 
785698434561019904, 990906232268521472, 771697908789968896, 1020415718184153088, 
1029450182210015232), keyword = c("remoaner", "remoaner", "remoaner", 
"remoaner", "remoaner", "remoaner")), row.names = c(NA, -6L), problems = structure(list(
    row = c(106L, 107L, 108L, 109L, 110L, 111L, 1785L, 1786L, 
    3166L, 3167L, 3168L, 6078L, 6079L, 6080L, 6106L, 6107L, 6108L, 
    6250L, 6251L, 6252L, 6253L, 8568L, 8569L, 8737L, 8738L, 8739L, 
    8740L, 8744L, 8745L, 8746L, 13232L, 13233L, 13234L, 14713L, 
    14714L, 15675L, 15676L, 15677L, 18672L, 18673L, 19735L, 19736L, 
    19737L, 19738L, 19739L, 19740L, 19773L, 19774L, 19775L, 20609L, 
    20610L, 20611L, 20774L, 20775L, 20776L, 23594L, 23595L, 23596L, 
    23597L, 24658L, 24659L, 26747L, 26748L, 26749L, 28388L, 28389L, 
    28390L, 28530L, 28531L, 28532L, 28533L, 28969L, 28970L, 30090L, 
    30091L, 30539L, 30540L, 30541L, 37020L, 37021L, 37620L, 37621L, 
    38702L, 38703L, 39489L, 39490L, 40052L, 40053L, 40054L, 40729L, 
    40730L, 40731L, 40732L, 41786L, 41787L, 42883L, 42884L, 42885L, 
    46803L, 46804L, 50709L, 50710L, 50711L, 51985L, 51986L, 52230L, 
    52231L, 52232L, 52233L, 54097L, 54098L, 54099L, 54100L, 54134L, 
    54135L, 54136L, 54137L, 54251L, 54252L, 54253L, 57349L, 57350L, 
    57848L, 57849L, 57850L, 58202L, 58203L, 58204L, 59773L, 59774L, 
    59775L, 59776L, 59861L, 59862L, 59863L, 59864L, 60008L, 60009L, 
    60010L, 60227L, 60228L, 60339L, 60340L, 60341L, 60342L, 61573L, 
    61574L, 61575L, 61576L, 61577L, 61578L, 65302L, 65303L, 65772L, 
    65773L, 68813L, 68814L, 70690L, 70691L, 70997L, 70998L, 71710L, 
    71711L, 71712L, 71713L, 72172L, 72173L, 72174L, 72175L, 72218L, 
    72219L, 72220L, 72221L, 74473L, 74474L, 74475L, 74476L), 
    col = c(NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_, NA_character_, NA_character_, NA_character_, 
    NA_character_), expected = c("4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns", "4 columns", 
    "4 columns", "4 columns", "4 columns", "4 columns"), actual = c("2 columns", 
    "1 columns", "1 columns", "1 columns", "1 columns", "3 columns", 
    "2 columns", "3 columns", "2 columns", "1 columns", "3 columns", 
    "2 columns", "1 columns", "3 columns", "2 columns", "1 columns", 
    "3 columns", "2 columns", "1 columns", "1 columns", "3 columns", 
    "2 columns", "3 columns", "2 columns", "1 columns", "1 columns", 
    "3 columns", "2 columns", "1 columns", "3 columns", "2 columns", 
    "1 columns", "3 columns", "2 columns", "3 columns", "2 columns", 
    "1 columns", "3 columns", "2 columns", "3 columns", "2 columns", 
    "1 columns", "1 columns", "1 columns", "1 columns", "3 columns", 
    "2 columns", "1 columns", "3 columns", "2 columns", "1 columns", 
    "3 columns", "2 columns", "1 columns", "3 columns", "2 columns", 
    "1 columns", "1 columns", "3 columns", "2 columns", "3 columns", 
    "2 columns", "1 columns", "3 columns", "2 columns", "1 columns", 
    "3 columns", "2 columns", "1 columns", "1 columns", "3 columns", 
    "2 columns", "3 columns", "2 columns", "3 columns", "2 columns", 
    "1 columns", "3 columns", "2 columns", "3 columns", "2 columns", 
    "3 columns", "2 columns", "3 columns", "2 columns", "3 columns", 
    "2 columns", "1 columns", "3 columns", "2 columns", "1 columns", 
    "1 columns", "3 columns", "2 columns", "3 columns", "2 columns", 
    "1 columns", "3 columns", "2 columns", "3 columns", "2 columns", 
    "1 columns", "3 columns", "2 columns", "3 columns", "2 columns", 
    "1 columns", "1 columns", "3 columns", "2 columns", "1 columns", 
    "1 columns", "3 columns", "2 columns", "1 columns", "1 columns", 
    "3 columns", "2 columns", "1 columns", "3 columns", "2 columns", 
    "3 columns", "2 columns", "1 columns", "3 columns", "2 columns", 
    "1 columns", "3 columns", "2 columns", "1 columns", "1 columns", 
    "3 columns", "2 columns", "1 columns", "1 columns", "3 columns", 
    "2 columns", "1 columns", "3 columns", "2 columns", "3 columns", 
    "2 columns", "1 columns", "1 columns", "3 columns", "2 columns", 
    "1 columns", "1 columns", "1 columns", "1 columns", "3 columns", 
    "2 columns", "3 columns", "2 columns", "3 columns", "2 columns", 
    "3 columns", "2 columns", "3 columns", "2 columns", "3 columns", 
    "2 columns", "1 columns", "1 columns", "3 columns", "2 columns", 
    "1 columns", "1 columns", "3 columns", "2 columns", "1 columns", 
    "1 columns", "3 columns", "2 columns", "1 columns", "1 columns", 
    "3 columns"), file = c("'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'", "'remoan_only2.csv'", "'remoan_only2.csv'", 
    "'remoan_only2.csv'")), row.names = c(NA, -177L), class = c("tbl_df", 
"tbl", "data.frame")), class = c("tbl_df", "tbl", "data.frame"
))
> 



Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...