Ниже вы можете получить ответ в формате json. затем с помощью json_normalize
. Делая это, вы увидите, что в столбцах есть следующие списки / словари. Так что я предложу 2-е решение, которое также сгладит их, но оно действительно вытянет ваш стол горизонтально
Код 1
import requests
from bs4 import BeautifulSoup
from pandas.io.json import json_normalize
import pandas as pd
url = "https://www.moneysupermarket.com/mortgages/results/#?goal=1&property=170000&borrow=150000&types=1&types=2&types=3&types=4&types=5"
request_url = 'https://www.moneysupermarket.com/bin/services/aggregation'
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36'}
payload = {
'channelId': '55',
'enquiryId': '2e619c17-061a-4812-adad-40a9f9d8dcbc',
'limit': '20',
'offset': '0',
'sort': 'initialMonthlyPayment'}
jsonObj = requests.get(request_url, headers=headers, params = payload).json()
results = pd.DataFrame()
for each in jsonObj['results']:
temp_df = json_normalize(each['quote'])
results = results.append(temp_df).reset_index(drop=True)
Выход 1:
print (results)
@class ... trackerDescription
0 com.moneysupermarket.mortgages.entity.Mortgage... ...
1 com.moneysupermarket.mortgages.entity.Mortgage... ...
2 com.moneysupermarket.mortgages.entity.Mortgage... ...
3 com.moneysupermarket.mortgages.entity.Mortgage... ...
4 com.moneysupermarket.mortgages.entity.Mortgage... ...
5 com.moneysupermarket.mortgages.entity.Mortgage... ...
6 com.moneysupermarket.mortgages.entity.Mortgage... ...
7 com.moneysupermarket.mortgages.entity.Mortgage... ...
8 com.moneysupermarket.mortgages.entity.Mortgage... ...
9 com.moneysupermarket.mortgages.entity.Mortgage... ...
10 com.moneysupermarket.mortgages.entity.Mortgage... ...
11 com.moneysupermarket.mortgages.entity.Mortgage... ...
12 com.moneysupermarket.mortgages.entity.Mortgage... ...
13 com.moneysupermarket.mortgages.entity.Mortgage... ...
14 com.moneysupermarket.mortgages.entity.Mortgage... ...
15 com.moneysupermarket.mortgages.entity.Mortgage... ... after 26 Months,BBR + 3.99% for the remaining ...
16 com.moneysupermarket.mortgages.entity.Mortgage... ...
17 com.moneysupermarket.mortgages.entity.Mortgage... ...
18 com.moneysupermarket.mortgages.entity.Mortgage... ...
19 com.moneysupermarket.mortgages.entity.Mortgage... ... after 26 Months,BBR + 3.99% for the remaining ...
[20 rows x 51 columns]
Код 2:
import requests
import pandas as pd
url = "https://www.moneysupermarket.com/mortgages/results/#?goal=1&property=170000&borrow=150000&types=1&types=2&types=3&types=4&types=5"
request_url = 'https://www.moneysupermarket.com/bin/services/aggregation'
headers = {'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/72.0.3626.121 Safari/537.36'}
payload = {
'channelId': '55',
'enquiryId': '2e619c17-061a-4812-adad-40a9f9d8dcbc',
'limit': '20',
'offset': '0',
'sort': 'initialMonthlyPayment'}
data = requests.get(request_url, headers=headers, params = payload).json()
def flatten_json(y):
out = {}
def flatten(x, name=''):
if type(x) is dict:
for a in x:
flatten(x[a], name + a + '_')
elif type(x) is list:
i = 0
for a in x:
flatten(a, name + str(i) + '_')
i += 1
else:
out[name[:-1]] = x
flatten(y)
return out
results = pd.DataFrame()
for each in data['results']:
flat = flatten_json(each)
temp_df = pd.DataFrame([flat], columns = flat.keys())
results = results.append(temp_df).reset_index(drop=True)
Выход 2:
print (results)
apply_active apply_desktop ... straplineLinkLabel topTip
0 True True ... None None
1 True True ... None None
2 True True ... None None
3 True True ... None None
4 True True ... None None
5 True True ... None None
6 True True ... None None
7 True True ... None None
8 True True ... None None
9 True True ... None None
10 True True ... None None
11 True True ... None None
12 True True ... None None
13 True True ... None None
14 True True ... None None
15 True True ... None None
16 True True ... None None
17 True True ... None None
18 True True ... None None
19 True True ... None None
[20 rows x 131 columns]