Вот пример, основанный на векторизации random.choice
с заданной матрицей вероятностей -
def matrixprob_to_onehot(ar):
# Get one-hot encoded boolean array based on matrix of probabilities
c = ar.cumsum(axis=1)
idx = (np.random.rand(len(c), 1) < c).argmax(axis=1)
ar_out = np.zeros(ar.shape, dtype=bool)
ar_out[np.arange(len(idx)),idx] = 1
return ar_out
ar_out = matrixprob_to_onehot(df.values)
df_out = pd.DataFrame(ar_out.view('i1'), index=df.index, columns=df.columns)
Проверка с большим набором данных для вероятностей -
In [139]: df = pd.DataFrame({"T1" : [0.8,0.5,0.01],"T2":[0.1,0.2,0.89],"T3":[0.1,0.3,0.1]})
In [140]: df
Out[140]:
T1 T2 T3
0 0.80 0.10 0.1
1 0.50 0.20 0.3
2 0.01 0.89 0.1
In [141]: p = np.array([matrixprob_to_onehot(df.values) for i in range(100000)]).argmax(2)
In [142]: np.array([np.bincount(p[:,i])/100000.0 for i in range(len(df))])
Out[142]:
array([[0.80064, 0.0995 , 0.09986],
[0.50051, 0.20113, 0.29836],
[0.01015, 0.89045, 0.0994 ]])
In [145]: np.round(_,2)
Out[145]:
array([[0.8 , 0.1 , 0.1 ],
[0.5 , 0.2 , 0.3 ],
[0.01, 0.89, 0.1 ]])
Синхронизация 1000,000
строк -
# Setup input
In [169]: N = 1000000
...: a = np.random.rand(N,3)
...: df = pd.DataFrame(a/a.sum(1,keepdims=1),columns=[['T1','T2','T3']])
# @gmds's soln
In [171]: %timeit pd.get_dummies((np.random.rand(len(df), 1) > df.cumsum(axis=1)).idxmin(axis=1))
1 loop, best of 3: 4.82 s per loop
# Soln from this post
In [172]: %%timeit
...: ar_out = matrixprob_to_onehot(df.values)
...: df_out = pd.DataFrame(ar_out.view('i1'), index=df.index, columns=df.columns)
10 loops, best of 3: 43.1 ms per loop