Я работаю над drilldowns
в Highcharter
и хотел бы создать собственный цветовой профиль на основе имен столбцов. Я могу сделать это для начального графика, но не могу сделать это для второго уровня (и последующего третьего уровня при необходимости). В настоящее время детализация просто берет цвет исходного столбца, я бы хотел предоставить детализацию собственную цветовую схему.
Проблема в том, куда мне поставить Colors2
в list()
.
Ниже приведен код:
library (shinyjs)
library (tidyr)
library (data.table)
library (highcharter)
library (dplyr)
library (shinydashboard)
library (shiny)
x <- c("Farm","Farm","Farm","City","City","City","Ocean","Ocean")
y <- c("Sheep","Sheep","Cow","Car","Bus","Bus","Boat","Boat")
z <- c("Bill","Tracy","Sandy","Bob","Carl","Newt","Fig","Tony")
a <- c(1,1,1,1,1,1,1,1)
dat <- data.frame(x,y,z,a)
header <- dashboardHeader()
body <- dashboardBody(highchartOutput("Working"))
sidebar <- dashboardSidebar()
ui <- dashboardPage(header, sidebar, body)
server <- function(input, output, session) {
output$Working <- renderHighchart({
#Custom Color Profile
Set1 <- dat$x == "Farm"
Set1[is.na(Set1)] <- FALSE
Set2 <- dat$x == "City"
Set2[is.na(Set2)] <- FALSE
Set3 <- dat$x == "Ocean"
Set3[is.na(Set3)] <- FALSE
dat[Set1, "Colors"] <- "#E4551F"
dat[Set2, "Colors"] <- "#00AB8E"
dat[Set3, "Colors"] <- "#E4551F"
Set1 <- dat$y == "Sheep"
Set1[is.na(Set1)] <- FALSE
Set2 <- dat$y == "Cow"
Set2[is.na(Set2)] <- FALSE
Set3 <- dat$y == "Car"
Set3[is.na(Set3)] <- FALSE
Set4 <- dat$y == "Bus"
Set4[is.na(Set4)] <- FALSE
Set5 <- dat$y == "Boat"
Set5[is.na(Set5)] <- FALSE
dat[Set1, "Colors2"] <- "#009A00"
dat[Set2, "Colors2"] <- "#F6FC00"
dat[Set3, "Colors2"] <- "#FF7900"
dat[Set4, "Colors2"] <- "#D20000"
WIP[Set5, "Colors2"] <- "#009A00"
#First Tier
datSum <- dat %>%
group_by(x, Colors) %>%
summarize(Quantity = sum(a)
)
Lvl1dfStatus <- tibble(name = datSum$x, y = datSum$Quantity, Colors = datSum$Colors, drilldown = tolower(name))
#Second Tier
Level_2_Drilldowns <- lapply(unique(dat$x), function(x_level) {
datSum2 <- dat[dat$x == x_level,]
datSum2 <- datSum2 %>%
group_by(y, Colors2) %>%
summarize(Quantity = sum(a)
)
Lvl2dfStatus <- tibble(name = datSum2$y,y = datSum2$Quantity, Colors = datSum2$Colors2, drilldown = tolower(paste(x_level, name, sep = "_")))
list(id = tolower(x_level), type = "column", data = list_parse(Lvl2dfStatus))
})
#Third Tier
Level_3_Drilldowns <- lapply(unique(dat$x), function(x_level) {
datSum2 <- dat[dat$x == x_level,]
lapply(unique(datSum2$y), function(y_level) {
datSum3 <- datSum2[datSum2$y == y_level,]
datSum3 <- datSum3 %>%
group_by(z) %>%
summarize(Quantity = sum(a)
)
Lvl3dfStatus <- tibble(name = datSum3$z,y = datSum3$Quantity)
list(id = tolower(paste(x_level, y_level, sep = "_")), type = "column", data = list_parse2(Lvl3dfStatus))
})
}) %>% unlist(recursive = FALSE)
#Graph
highchart() %>%
hc_xAxis(type = "category") %>%
hc_add_series(Lvl1dfStatus, "column", hcaes(x = name, y = y, color = Colors)) %>%
hc_plotOptions(column = list(stacking = "normal")) %>%
hc_drilldown(
allowPointDrilldown = TRUE,
series = c(Level_2_Drilldowns, Level_3_Drilldowns)
)
})
}
shinyApp(ui, server)