Для моей магистерской диссертации я создал модель Word2Vec. Я хотел показать это изображение, чтобы уточнить результат. Но как работает отображение для отображения слов в этом двумерном пространстве?
Все слова представлены вектором 300 dim. Как они отображаются на этом 2D-изображении? Что такое оси x & y?
Код:
w2v_model.build_vocab(documents)
words = w2v_model.wv.vocab.keys()
vocab_size = len(words)
print("Vocab size", vocab_size)
w2v_model.train(documents, total_examples=len(documents),
epochs=W2V_EPOCH)
tokenizer = Tokenizer()
tokenizer.fit_on_texts(df_train.text)
vocab_size = len(tokenizer.word_index) + 1
print("Total words", vocab_size)
x_train = pad_sequences(tokenizer.texts_to_sequences(df_train.text), maxlen=SEQUENCE_LENGTH)
x_test = pad_sequences(tokenizer.texts_to_sequences(df_test.text), maxlen=SEQUENCE_LENGTH)
labels = df_train.target.unique().tolist()
labels.append(NEUTRAL)
encoder = LabelEncoder()
encoder.fit(df_train.target.tolist())
y_train = encoder.transform(df_train.target.tolist())
y_test = encoder.transform(df_test.target.tolist())
y_train = y_train.reshape(-1,1)
y_test = y_test.reshape(-1,1)
embedding_matrix = np.zeros((vocab_size, W2V_SIZE))
for word, i in tokenizer.word_index.items():
if word in w2v_model.wv:
embedding_matrix[i] = w2v_model.wv[word]
print(embedding_matrix.shape)
embedding_layer = Embedding(vocab_size, W2V_SIZE, weights=[embedding_matrix], input_length=SEQUENCE_LENGTH, trainable=False)