У меня есть обучающие и тестовые файлы "labeleled.arff".Затем я строю классификатор и записываю в файл "modelFile.model".
У меня есть файл «unlabeled.arff» с последним атрибутом в каждой строке «?».
Как я могу сделать прогноз в Java или C #?У меня есть код, но он не верный, всегда дает мне один и тот же прогноз.
Спасибо
// Write to Model
public static void Classify()
{
Instances train = new Instances(new java.io.FileReader(dirTrain + "labeled.arff"));
Instances test = new Instances(new java.io.FileReader(dirTest + "labeled.arff"));
train.setClassIndex(train.numAttributes() - 1);
test.setClassIndex(test.numAttributes() - 1);
// train Classifier
Classifier cl = new J48();
// Randomize the order of the instances in the dataset
weka.filters.Filter myRandom = new weka.filters.unsupervised.instance.Randomize();
myRandom.setInputFormat(train);
train = weka.filters.Filter.useFilter(train, myRandom);
// Build the classifier
cl.buildClassifier(train);
// evaluate classifier and print some statistics
Evaluation eval = new Evaluation(train);
eval.evaluateModel(cl, test);
Console.WriteLine(eval.toSummaryString("\nResults Decision Tree\n======\n", false));
SerializationHelper.write(dirModel + "modelFile.model", cl);
}
// Make predictions
public void Predictions()
{
Classifier cl = (Classifier)SerializationHelper.read(dirModel + "modelFile.model");
// load unlabeled data
Instances unlabeled = new Instances(new java.io.FileReader(pathFeatures + "unlabeled.arff"));
// set class attribute
unlabeled.setClassIndex(unlabeled.numAttributes() - 1);
// create copy
Instances labeled = new Instances(unlabeled);
// label instances
for (int i = 0; i < unlabeled.numInstances(); i++)
{
double clsLabel = cl.classifyInstance(unlabeled.instance(i));
labeled.instance(i).setClassValue(clsLabel);
}
int numCorrect = 0;
for (int i = 0; i < unlabeled.numInstances(); i++)
{
double pred = cl.classifyInstance(unlabeled.instance(i));
Console.Write("ID: " + unlabeled.instance(i).value(i));
//Console.Write(", actual: " + unlabeled.classAttribute().value((int)unlabeled.instance(i).classValue()));
Console.WriteLine(", predicted: " + unlabeled.classAttribute().value((int)pred));
}
Console.WriteLine("Correct predictions: " + numCorrect);
}