Apache Spark 2.4.0, AWS EMR, Spark Redshift и класс User вызвала исключение: java.lang.AbstractMethodError - PullRequest
0 голосов
/ 11 марта 2019

Я использую Apache Spark 2.4.0, AWS EMR и Spark Redshift и сейчас столкнулся со следующей ошибкой при чтении таблицы Redshift в Spark DataFrame:

User class threw exception: java.lang.AbstractMethodError
        at org.apache.spark.sql.execution.datasources.DataSourceUtils$$anonfun$verifySchema$1.apply(DataSourceUtils.scala:48)
        at org.apache.spark.sql.execution.datasources.DataSourceUtils$$anonfun$verifySchema$1.apply(DataSourceUtils.scala:47)
        at scala.collection.Iterator$class.foreach(Iterator.scala:891)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
        at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
        at org.apache.spark.sql.types.StructType.foreach(StructType.scala:99)
        at org.apache.spark.sql.execution.datasources.DataSourceUtils$.verifySchema(DataSourceUtils.scala:47)
        at org.apache.spark.sql.execution.datasources.DataSourceUtils$.verifyReadSchema(DataSourceUtils.scala:39)
        at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:400)
        at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
        at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
        at com.databricks.spark.redshift.RedshiftRelation.buildScan(RedshiftRelation.scala:168)
        at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$10.apply(DataSourceStrategy.scala:293)
        at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$10.apply(DataSourceStrategy.scala:293)
        at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$pruneFilterProject$1.apply(DataSourceStrategy.scala:326)
        at org.apache.spark.sql.execution.datasources.DataSourceStrategy$$anonfun$pruneFilterProject$1.apply(DataSourceStrategy.scala:325)
        at org.apache.spark.sql.execution.datasources.DataSourceStrategy.pruneFilterProjectRaw(DataSourceStrategy.scala:403)
        at org.apache.spark.sql.execution.datasources.DataSourceStrategy.pruneFilterProject(DataSourceStrategy.scala:321)
        at org.apache.spark.sql.execution.datasources.DataSourceStrategy.apply(DataSourceStrategy.scala:289)
        at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:63)
        at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$1.apply(QueryPlanner.scala:63)
        at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:435)
        at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:441)
        at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
        at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:93)
        at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:78)
        at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2$$anonfun$apply$2.apply(QueryPlanner.scala:75)
        at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
        at scala.collection.TraversableOnce$$anonfun$foldLeft$1.apply(TraversableOnce.scala:157)
        at scala.collection.Iterator$class.foreach(Iterator.scala:891)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
        at scala.collection.TraversableOnce$class.foldLeft(TraversableOnce.scala:157)
        at scala.collection.AbstractIterator.foldLeft(Iterator.scala:1334)
        at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:75)
        at org.apache.spark.sql.catalyst.planning.QueryPlanner$$anonfun$2.apply(QueryPlanner.scala:67)
        at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:435)
        at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:441)
        at org.apache.spark.sql.catalyst.planning.QueryPlanner.plan(QueryPlanner.scala:93)
        at org.apache.spark.sql.execution.QueryExecution.sparkPlan$lzycompute(QueryExecution.scala:72)
        at org.apache.spark.sql.execution.QueryExecution.sparkPlan(QueryExecution.scala:68)
        at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:77)
        at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:77)
        at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3360)
        at org.apache.spark.sql.Dataset.head(Dataset.scala:2545)
        at org.apache.spark.sql.Dataset.take(Dataset.scala:2759)
        at org.apache.spark.sql.Dataset.getRows(Dataset.scala:255)
        at org.apache.spark.sql.Dataset.showString(Dataset.scala:292)
        at org.apache.spark.sql.Dataset.show(Dataset.scala:746)
        at org.apache.spark.sql.Dataset.show(Dataset.scala:705)
        at org.apache.spark.sql.Dataset.show(Dataset.scala:714)

Версия:

spark-redshift_2.11:3.0.0-preview1
apache.spark 2.11:2.0.4

Что я делаю не так и как решить эту проблему?

1 Ответ

0 голосов
/ 11 марта 2019

Вместо этого вы можете использовать https://mvnrepository.com/artifact/com.amazon.redshift/redshift-jdbc42-no-awssdk, а затем создать таблицу, используя jdbc:redshift://...

...