ValueError: Ошибка при проверке цели: ожидалось, что conv2d_24 будет иметь форму (256, 256, 1), но получил массив с формой (256, 256, 3) - PullRequest
0 голосов
/ 22 марта 2019

Я применяю сеть биомедицинской сегментации UNET для данных цветных изображений и наземной правды из 50 изображений (преобразованных в файл NPY размером 50 256 256,3 каждый), но ошибка выше и сеть не может перейти к обучению. Краткое описание модели приведено ниже:

__________________________________________________________________________________________________
Layer (type)                    Output Shape         Param #     Connected to                     
==================================================================================================
input_1 (InputLayer)            (None, 256, 256, 3)  0                                            
__________________________________________________________________________________________________
conv2d_1 (Conv2D)               (None, 256, 256, 64) 1792        input_1[0][0]                    
__________________________________________________________________________________________________
conv2d_2 (Conv2D)               (None, 256, 256, 64) 36928       conv2d_1[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_1 (MaxPooling2D)  (None, 128, 128, 64) 0           conv2d_2[0][0]                   
__________________________________________________________________________________________________
conv2d_3 (Conv2D)               (None, 128, 128, 128 73856       max_pooling2d_1[0][0]            
__________________________________________________________________________________________________
conv2d_4 (Conv2D)               (None, 128, 128, 128 147584      conv2d_3[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_2 (MaxPooling2D)  (None, 64, 64, 128)  0           conv2d_4[0][0]                   
__________________________________________________________________________________________________
conv2d_5 (Conv2D)               (None, 64, 64, 256)  295168      max_pooling2d_2[0][0]            
__________________________________________________________________________________________________
conv2d_6 (Conv2D)               (None, 64, 64, 256)  590080      conv2d_5[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_3 (MaxPooling2D)  (None, 32, 32, 256)  0           conv2d_6[0][0]                   
__________________________________________________________________________________________________
conv2d_7 (Conv2D)               (None, 32, 32, 512)  1180160     max_pooling2d_3[0][0]            
__________________________________________________________________________________________________
conv2d_8 (Conv2D)               (None, 32, 32, 512)  2359808     conv2d_7[0][0]                   
__________________________________________________________________________________________________
dropout_1 (Dropout)             (None, 32, 32, 512)  0           conv2d_8[0][0]                   
__________________________________________________________________________________________________
max_pooling2d_4 (MaxPooling2D)  (None, 16, 16, 512)  0           dropout_1[0][0]                  
__________________________________________________________________________________________________
conv2d_9 (Conv2D)               (None, 16, 16, 1024) 4719616     max_pooling2d_4[0][0]            
__________________________________________________________________________________________________
conv2d_10 (Conv2D)              (None, 16, 16, 1024) 9438208     conv2d_9[0][0]                   
__________________________________________________________________________________________________
dropout_2 (Dropout)             (None, 16, 16, 1024) 0           conv2d_10[0][0]                  
__________________________________________________________________________________________________
up_sampling2d_1 (UpSampling2D)  (None, 32, 32, 1024) 0           dropout_2[0][0]                  
__________________________________________________________________________________________________
conv2d_11 (Conv2D)              (None, 32, 32, 512)  2097664     up_sampling2d_1[0][0]            
__________________________________________________________________________________________________
concatenate_1 (Concatenate)     (None, 32, 32, 1024) 0           dropout_1[0][0]                  
                                                                 conv2d_11[0][0]                  
__________________________________________________________________________________________________
conv2d_12 (Conv2D)              (None, 32, 32, 512)  4719104     concatenate_1[0][0]              
__________________________________________________________________________________________________
conv2d_13 (Conv2D)              (None, 32, 32, 512)  2359808     conv2d_12[0][0]                  
__________________________________________________________________________________________________
up_sampling2d_2 (UpSampling2D)  (None, 64, 64, 512)  0           conv2d_13[0][0]                  
__________________________________________________________________________________________________
conv2d_14 (Conv2D)              (None, 64, 64, 256)  524544      up_sampling2d_2[0][0]            
__________________________________________________________________________________________________
concatenate_2 (Concatenate)     (None, 64, 64, 512)  0           conv2d_6[0][0]                   
                                                                 conv2d_14[0][0]                  
__________________________________________________________________________________________________
conv2d_15 (Conv2D)              (None, 64, 64, 256)  1179904     concatenate_2[0][0]              
__________________________________________________________________________________________________
conv2d_16 (Conv2D)              (None, 64, 64, 256)  590080      conv2d_15[0][0]                  
__________________________________________________________________________________________________
up_sampling2d_3 (UpSampling2D)  (None, 128, 128, 256 0           conv2d_16[0][0]                  
__________________________________________________________________________________________________
conv2d_17 (Conv2D)              (None, 128, 128, 128 131200      up_sampling2d_3[0][0]            
__________________________________________________________________________________________________
concatenate_3 (Concatenate)     (None, 128, 128, 256 0           conv2d_4[0][0]                   
                                                                 conv2d_17[0][0]                  
__________________________________________________________________________________________________
conv2d_18 (Conv2D)              (None, 128, 128, 128 295040      concatenate_3[0][0]              
__________________________________________________________________________________________________
conv2d_19 (Conv2D)              (None, 128, 128, 128 147584      conv2d_18[0][0]                  
__________________________________________________________________________________________________
up_sampling2d_4 (UpSampling2D)  (None, 256, 256, 128 0           conv2d_19[0][0]                  
__________________________________________________________________________________________________
conv2d_20 (Conv2D)              (None, 256, 256, 64) 32832       up_sampling2d_4[0][0]            
__________________________________________________________________________________________________
concatenate_4 (Concatenate)     (None, 256, 256, 128 0           conv2d_2[0][0]                   
                                                                 conv2d_20[0][0]                  
__________________________________________________________________________________________________
conv2d_21 (Conv2D)              (None, 256, 256, 64) 73792       concatenate_4[0][0]              
__________________________________________________________________________________________________
conv2d_22 (Conv2D)              (None, 256, 256, 64) 36928       conv2d_21[0][0]                  
__________________________________________________________________________________________________
conv2d_23 (Conv2D)              (None, 256, 256, 2)  1154        conv2d_22[0][0]                  
__________________________________________________________________________________________________
conv2d_24 (Conv2D)              (None, 256, 256, 1)  3           conv2d_23[0][0]                  
==================================================================================================
Total params: 31,032,837
Trainable params: 31,032,837
Non-trainable params: 0
__________________________________________________________________________________________________

также модель архитектуры выглядит следующим образом:

import numpy as np 
import os
import skimage.io as io
import skimage.transform as trans
import numpy as np
from keras.models import *
from keras.layers import *
from keras.optimizers import *
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras import backend as keras


def unet(pretrained_weights = None,input_size = (256,256,3)):
    inputs = Input(input_size)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
    drop4 = Dropout(0.5)(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
    drop5 = Dropout(0.5)(conv5)

    up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
    merge6 = concatenate([drop4,up6], axis = 3)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)

    up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
    merge7 = concatenate([conv3,up7], axis = 3)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)

    up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
    merge8 = concatenate([conv2,up8], axis = 3)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)

    up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
    merge9 = concatenate([conv1,up9], axis = 3)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)

    model = Model(input = inputs, output = conv10)

    model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy'])

    #model.summary()

    if(pretrained_weights):
        model.load_weights(pretrained_weights)

    return model

Но я получаю эту ошибку:

ValueError: Ошибка при проверке цели: ожидалось, что conv2d_24 будет иметь форму (256, 256, 1), но получил массив с формой (256, 256, 3)

Что я могу сделать, чтобы это исправить?

...