Я взял ваш пример и добавил несколько случайных значений, чтобы у нас было с чем поработать:
df = pd.DataFrame([[1, '3/10/2002', '4/12/2005'], [1, '4/13/2005', '5/20/2005'], [1, '5/21/2005', '8/10/2009'], [2, '2/20/2012', '2/20/2015'], [3, '10/19/2003', '12/12/2012']])
df.columns = ['id_num', 'start', 'end']
df.start = pd.to_datetime(df['start'], format= "%m/%d/%Y")
df.end = pd.to_datetime(df['end'], format= "%m/%d/%Y")
np.random.seed(0) # seeding the random values for reproducibility
df['value'] = np.random.random(len(df))
Пока у нас есть:
id_num start end value
0 1 2002-03-10 2005-04-12 0.548814
1 1 2005-04-13 2005-05-20 0.715189
2 1 2005-05-21 2009-08-10 0.602763
3 2 2012-02-20 2015-02-20 0.544883
4 3 2003-10-19 2012-12-12 0.423655
Нам нужны значения вконец года для каждой данной даты, будь то начало или конец.Поэтому мы будем относиться ко всем датам одинаково.Мы просто хотим, чтобы дата + пользователь + значение:
tmp = df[['end', 'value']].copy()
tmp = tmp.rename(columns={'end':'start'})
new = pd.concat([df[['start', 'value']], tmp], sort=True)
new['id_num'] = df.id_num.append(df.id_num) # doubling the id numbers
Дали нам:
start value id_num
0 2002-03-10 0.548814 1
1 2005-04-13 0.715189 1
2 2005-05-21 0.602763 1
3 2012-02-20 0.544883 2
4 2003-10-19 0.423655 3
0 2005-04-12 0.548814 1
1 2005-05-20 0.715189 1
2 2009-08-10 0.602763 1
3 2015-02-20 0.544883 2
4 2012-12-12 0.423655 3
Теперь мы можем сгруппировать по идентификационному номеру и году:
new = new.groupby(['id_num', new.start.dt.year]).sum().reset_index(0).sort_index()
id_num value
start
2002 1 0.548814
2003 3 0.423655
2005 1 2.581956
2009 1 0.602763
2012 2 0.544883
2012 3 0.423655
2015 2 0.544883
Инаконец, для каждого пользователя мы расширяем диапазон для каждого года, заполняя пропущенные данные:
new = new.groupby('id_num').apply(lambda x: x.reindex(pd.RangeIndex(x.index.min(), x.index.max() + 1)).fillna(method='ffill')).drop(columns='id_num')
value
id_num
1 2002 0.548814
2003 0.548814
2004 0.548814
2005 2.581956
2006 2.581956
2007 2.581956
2008 2.581956
2009 0.602763
2 2012 0.544883
2013 0.544883
2014 0.544883
2015 0.544883
3 2003 0.423655
2004 0.423655
2005 0.423655
2006 0.423655
2007 0.423655
2008 0.423655
2009 0.423655
2010 0.423655
2011 0.423655
2012 0.423655