Я пытаюсь обучить модель с помощью LSTM Autoencoder, используя Keras, чтобы восстановить входные данные, которые я дал модели, и я получаю ошибку NaN в результате, который я получаю после декодирования части. Вот мой код;
# lstm autoencoder recreate sequence
from numpy import array
import numpy as np
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
from keras.layers import RepeatVector
from keras.layers import TimeDistributed
from keras.utils import plot_model
import pandas as pd
df = pd.read_csv('flight_data.csv',sep=',',header=None)
data = df.to_numpy()
print(data.shape)
# define input sequence
sequence1 = array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])
sequence2 = array([0.2, 0.4, 0.6, 0.4, 1.0, 1.2, 1.4, 1.6, 1.8])
# reshape input into [samples, timesteps, features]
n_in = 100
data = data[73666:,:]
sequence = data.reshape((1,100,24))
print(sequence)
# define model
model = Sequential()
model.add(LSTM(100, activation='relu', input_shape=(n_in,24)))
model.add(RepeatVector(n_in))
model.add(LSTM(100, activation='relu', return_sequences=True))
model.add(TimeDistributed(Dense(24)))
model.compile(optimizer='adam', loss='mse')
# fit model
model.fit(sequence, sequence, epochs=300, verbose=0)
plot_model(model, show_shapes=True, to_file='reconstruct_lstm_autoencoder.png')
# demonstrate recreation
yhat = model.predict(sequence, verbose=0)
print(yhat)
Я получил вывод как;
[[[9.46687355e+14 1.00000000e+01 4.42748822e+08 ... 0.00000000e+00
0.00000000e+00 0.00000000e+00]
[9.46687355e+14 1.00000000e+01 4.42748822e+08 ... 0.00000000e+00
0.00000000e+00 0.00000000e+00]
[9.46687355e+14 1.00000000e+01 4.42748823e+08 ... 0.00000000e+00
0.00000000e+00 0.00000000e+00]
...
[9.46687359e+14 1.00000000e+01 4.42748824e+08 ... 0.00000000e+00
0.00000000e+00 0.00000000e+00]
[9.46687359e+14 1.00000000e+01 4.42748824e+08 ... 0.00000000e+00
0.00000000e+00 0.00000000e+00]
[9.46687359e+14 1.00000000e+01 4.42748825e+08 ... 0.00000000e+00
0.00000000e+00 0.00000000e+00]]]
[[[nan nan nan ... nan nan nan]
[nan nan nan ... nan nan nan]
[nan nan nan ... nan nan nan]
...
[nan nan nan ... nan nan nan]
[nan nan nan ... nan nan nan]
[nan nan nan ... nan nan nan]]]
Какая часть может вызвать проблемы? Что мне делать?