Я наконец-то нашел решение для моего вопроса.Он не идеален, поскольку требует нескольких процессов записи и одного окончательного процесса объединения всех временных файлов, созданных во время выполнения.
Не стесняйтесь предлагать альтернативы.
Вот решение, которое я нашел.
import numpy as np
import geopandas as gpd
import pandas as pd
from shapely.geometry import Polygon
from multiprocessing import Pool, Lock, freeze_support
import os
from functools import partial
import time
def info(time_value):
print('module name:', __name__)
print('parent process:', os.getppid())
print('process id:', os.getpid())
print("Time spent: ", time.time() - time_value)
def init(l):
global lock
lock=l
def Data_Arranger(to_filename):
"""This function concatenates and deletes temporary files. It is an arranger
of the multicessing data results"
"""
Base = os.path.join(os.path.dirname(to_filename), 'temp')
Strings = [file for file in os.listdir(Base)]
Strings = [os.path.join(Base, S) for S in Strings]
if not os.path.exists(os.path.dirname(to_filename)):
os.mkdir(os.path.dirname(to_filename))
Sq = [S for S in Strings if S.endswith('.shp')]
gpd.GeoDataFrame(pd.concat([gpd.read_file(sq1) for sq1 in Sq]), crs=GDF.crs).to_file(to_filename)
for sq1 in Sq:
os.remove(sq1)
import shutil
shutil.rmtree(Base, ignore_errors=True)
def parallelize_df(gdf, func, n_cores, dx=100, dy=100, verbose=False, to_filename=None):
Geometries= gdf.loc[:, 'geometry'].values
crs = gdf.crs
pool = Pool(processes=n_cores, initializer=init, initargs=(Lock(), ) )
func_partial=partial(func, dx, dy, verbose, to_filename, crs) # prod_x has only one argument x (y is fixed to 10)
pool.map(func_partial, Geometries)
pool.close()
pool.join()
def generate_grid_from_gdf(dx=100, dy=100, verbose=False, to_filename=None, crs=None, polygon=None):
if verbose == True:
info(time.time())
else:
None
xmin,ymin,xmax,ymax = polygon.bounds
lenght = dx
wide = dy
cols = list(np.arange(int(np.floor(xmin)), int(np.ceil(xmax)), wide))
rows = list(np.arange(int(np.floor(ymin)), int(np.ceil(ymax)), lenght))
rows.reverse()
subpolygons = []
for x in cols:
for y in rows:
subpolygons.append( Polygon([(x,y), (x+wide, y), (x+wide, y-lenght), (x, y-lenght)]) )
lock.acquire()
print('parent process: ', os.getppid(), ' has activated the Lock')
GDF = gpd.GeoDataFrame(geometry=subpolygons, crs=crs)
to_filename = os.path.join(os.path.dirname(to_filename), 'temp', str(os.getpid()) + '_' + str(time.time()) + '.' + os.path.basename(to_filename).split('.')[-1])
if not os.path.exists(os.path.dirname(to_filename)):
os.mkdir(os.path.dirname(to_filename))
try:
print("to_filename: ", to_filename)
GDF.to_file(to_filename)
except:
print("error in the file saving")
lock.release()
print('parent process: ', os.getppid(), ' has unlocked')
def main(GDF, n_cores='standard', dx=100, dy=100, verbose= False, to_filename=None):
"""
GDF: geodataframe
n_cores: use standard or a positive numerical (int) value. It will set the number of cores to use in the multiprocessing
dx: dimension in the x coordinate to make the grid
dy: dimenion in the y coordinate to make the grid)
verbose: whether or not to show info from the processing. Appliable only if applying the function not
in Windows (LINUX, UBUNTU, etc.), or when running in separte console in Windows.
to_filename: the path which will be used to save the resultant file.
"""
if isinstance(n_cores, str):
import multiprocessing
N_cores = multiprocessing.cpu_count() -1
elif isinstance(n_cores, int):
N_cores =n_cores
parallelize_df(GDF, generate_grid_from_gdf, n_cores=N_cores, dx=dx, dy=dy, verbose=verbose, to_filename=to_filename)
Data_Arranger(to_filename)
####################################################################################
if "__main__" == __name__:
freeze_support()
GDF = gpd.read_file("Someone's_file.shp")
to_filename = "To_file_directory/To_file_name.shp"
dx = 500 # resampling to 500 units. Ex: assuming the coordinate reference system is in meters, this function will return polygons of the given geometries in 500m for the longitudinal dimension.
dy = 500 # same here. Assuming CRS is in meters units, the resultant file will be have polygons of 500m in latitudinal dimension
main(GDF, dx=dx, dy=dy, verbose=True, to_filename=to_filename)
Благодарю вас за потраченное время.
Филипп Леал