Я пытаюсь построить модель CNN с керасом. Когда я добавляю два блока Conv3D и MaxPooling, все нормально. Однако после добавления третьего блока (как показано в коде) количество обучаемых параметров приобретает отрицательное значение. Есть идеи, как это может произойти?
model = keras.models.Sequential()
# # # First Block
model.add(Conv2D(filters=16, kernel_size=(5, 5), padding='valid', input_shape=(157, 462, 14), activation = 'tanh' ))
model.add(MaxPooling2D( (2,2) ))
# # # Second Block
model.add(Conv2D(filters=32, kernel_size=(5, 5), padding='valid', activation = 'tanh'))
model.add(MaxPooling2D( (2, 2) ))
# # # Third Block
model.add(Conv2D(filters=64, kernel_size=(5, 5), padding='valid', activation = 'tanh'))
model.add(MaxPooling2D( (2, 2) ))
model.add(Flatten())
model.add(Dense(157 * 462))
model.compile(loss='mean_squared_error',
optimizer=keras.optimizers.Adamax(),
metrics=['mean_absolute_error'])
print(model.summary())
Результат этого кода следующий:
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 153, 458, 16) 5616
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 76, 229, 16) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 72, 225, 32) 12832
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 36, 112, 32) 0
_________________________________________________________________
conv2d_3 (Conv2D) (None, 32, 108, 64) 51264
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 16, 54, 64) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 55296) 0
_________________________________________________________________
dense_1 (Dense) (None, 72534) -284054698
=================================================================
Total params: -283,984,986
Trainable params: -283,984,986
Non-trainable params: 0
_________________________________________________________________
None