У меня есть небольшая трехслойная нейронная сеть с двумя входными нейронами, двумя скрытыми нейронами и одним выходным нейроном. Я пытаюсь придерживаться приведенного ниже формата использования только 2 скрытых нейронов.
Я пытаюсь показать, как это можно использовать, чтобы вести себя как логический элемент XOR, однако только с двумя скрытыми нейронами я получаю следующий плохой результат после 1 000 000 итераций!
Input: 0 0 Output: [0.01039096]
Input: 1 0 Output: [0.93708829]
Input: 0 1 Output: [0.93599738]
Input: 1 1 Output: [0.51917667]
Если я использую три скрытых нейрона, я получаю намного лучший результат с 100 000 итераций:
Input: 0 0 Output: [0.01831612]
Input: 1 0 Output: [0.98558057]
Input: 0 1 Output: [0.98567602]
Input: 1 1 Output: [0.02007876]
Я получаю приличный вывод с 3 нейронами в скрытом слое, но не с двумя нейронами в скрытом слое. Почему?
Согласно комментарию ниже, это репо содержит код высокого уровня для решения проблемы XOR с использованием двух скрытых нейронов.
Я не могу понять, что я делаю неправильно. Любые предложения приветствуются!
Прикреплен мой код:
import numpy as np
import matplotlib
from matplotlib import pyplot as plt
# Sigmoid function
def sigmoid(x, deriv=False):
if deriv:
return x * (1 - x)
return 1 / (1 + np.exp(-x))
alpha = [0.7]
# Input dataset
X = np.array([[0, 0],
[0, 1],
[1, 0],
[1, 1]])
# Output dataset
y = np.array([[0, 1, 1, 0]]).T
# seed random numbers to make calculation deterministic
np.random.seed(1)
# initialise weights randomly with mean 0
syn0 = 2 * np.random.random((2, 3)) - 1 # 1st layer of weights synapse 0 connecting L0 to L1
syn1 = 2 * np.random.random((3, 1)) - 1 # 2nd layer of weights synapse 0 connecting L1 to L2
# Randomize inputs for stochastic gradient descent
data = np.hstack((X, y)) # append Input and output dataset
np.random.shuffle(data) # shuffle
x, y = np.array_split(data, 2, 1) # Split along vertical(1) axis
for iter in range(100000):
for i in range(4):
# forward prop
layer0 = x[i] # Input layer
layer1 = sigmoid(np.dot(layer0, syn0)) # Prediction step for layer 1
layer2 = sigmoid(np.dot(layer1, syn1)) # Prediction step for layer 2
layer2_error = y[i] - layer2 # Compare how well layer2's guess was with input
layer2_delta = layer2_error * sigmoid(layer2, deriv=True) # Error weighted derivative step
if iter % 10000 == 0:
print("Error: ", str(np.mean(np.abs(layer2_error))))
plt.plot(iter, layer2_error, 'ro')
# Uses "confidence weighted error" from l2 to establish an error for l1
layer1_error = layer2_delta.dot(syn1.T)
layer1_delta = layer1_error * sigmoid(layer1, deriv=True) # Error weighted derivative step
# Since SGD we need to dot product two 1D arrays. This is how.
syn1 += (alpha * np.dot(layer1[:, None], layer2_delta[None, :])) # Update weights
syn0 += (alpha * np.dot(layer0[:, None], layer1_delta[None, :]))
# Training was done above, below we re run to test algorithm
layer0 = X # Input layer
layer1 = sigmoid(np.dot(layer0, syn0)) # Prediction step for layer 1
layer2 = sigmoid(np.dot(layer1, syn1)) # Prediction step for layer 2
plt.show()
print("output after training: \n")
print("Input: 0 0 \t Output: ", layer2[0])
print("Input: 1 0 \t Output: ", layer2[1])
print("Input: 0 1 \t Output: ", layer2[2])
print("Input: 1 1 \t Output: ", layer2[3])