Эксперты, я сталкиваюсь со странной проблемой, когда мое соединение PySpark из 2-х фреймов данных терпит неудачу, если я не использую широковещательную рассылку. Я использую Spark 1.6 с Python 2.17
Условие My Join очень простое, и объемы также минимальны (в КБ). Это общий код, и все эти имена в приведенных ниже выражениях определены как переменные, содержащие точные значения и работающие для многих других файлов.
DF = src.withColumnRenamed(srcCol, lkpCol)\
.join(broadcast(lkpDF), lkpCol, 'left')\
.filter(isnull(lkpDF[uniqueID])).coalesce(1)
Этот фрагмент кода работает нормально, пока я передаю свой поисковый Dataframe. В тот момент, когда я удаляю его, я сталкиваюсь с ошибкой ниже -
19/06/21 13:58:59 WARN scheduler.TaskSetManager: Lost task 0.0 in stage 43.0 (TID 1532, svr-m03wn05.c24.hadoop.com, executor 3): java.lang.OutOfMemoryError: Unable to acquire 228 bytes of memory, got 0
at org.apache.spark.memory.MemoryConsumer.allocatePage(MemoryConsumer.java:120)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.acquireNewPageIfNecessary(UnsafeExternalSorter.java:332)
at org.apache.spark.util.collection.unsafe.sort.UnsafeExternalSorter.insertRecord(UnsafeExternalSorter.java:347)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.insertRow(UnsafeExternalRowSorter.java:91)
at org.apache.spark.sql.execution.UnsafeExternalRowSorter.sort(UnsafeExternalRowSorter.java:168)
at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:90)
at org.apache.spark.sql.execution.Sort$$anonfun$1.apply(Sort.scala:64)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$21.apply(RDD.scala:728)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:88)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:96)
at org.apache.spark.rdd.CoalescedRDD$$anonfun$compute$1.apply(CoalescedRDD.scala:95)
at scala.collection.Iterator$$anon$13.hasNext(Iterator.scala:371)
at org.apache.spark.sql.execution.columnar.InMemoryRelation$$anonfun$2$$anon$1.hasNext(InMemoryColumnarTableScan.scala:140)
at org.apache.spark.storage.MemoryStore.unrollSafely(MemoryStore.scala:292)
at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:171)
at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:78)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:268)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:242)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
19/06/21 13:59:00 WARN server.TransportChannelHandler: Exception in connection from svr-m03wn05.c24.hadoop.com/15.546.349.115:45076
java.io.IOException: Connection reset by peer
at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
at sun.nio.ch.IOUtil.read(IOUtil.java:192)
at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:379)
at io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:313)
at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:881)
at io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:242)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:119)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:511)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
at java.lang.Thread.run(Thread.java:745)
19/06/21 13:59:00 WARN cluster.YarnSchedulerBackend$YarnSchedulerEndpoint: Container marked as failed: container_e68_1561070366427_23261_01_000004 on host: svr-m03wn05.c24.hadoop.com. Exit status: 52. Diagnostics: Exception from container-launch.
Container id: container_e68_1561070366427_23261_01_000004
Exit code: 52
Stack trace: ExitCodeException exitCode=52:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:604)
at org.apache.hadoop.util.Shell.run(Shell.java:507)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:789)
at org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor.launchContainer(LinuxContainerExecutor.java:399)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Shell output: main : command provided 1
main : run as user is userabc
main : requested yarn user is userabc
Writing to tmp file /data/1/yarn/nm/nmPrivate/application_1561070366427_23261/container_e68_1561070366427_23261_01_000004/container_e68_1561070366427_23261_01_000004.pid.tmp
Container exited with a non-zero exit code 52
19/06/21 13:59:00 ERROR cluster.YarnScheduler: Lost executor 3 on svr-m03wn05.c24.hadoop.com: Container marked as failed: container_e68_1561070366427_23261_01_000004 on host: svr-m03wn05.c24.hadoop.com. Exit status: 52. Diagnostics: Exception from container-launch.
Container id: container_e68_1561070366427_23261_01_000004
Exit code: 52
Stack trace: ExitCodeException exitCode=52:
at org.apache.hadoop.util.Shell.runCommand(Shell.java:604)
at org.apache.hadoop.util.Shell.run(Shell.java:507)
at org.apache.hadoop.util.Shell$ShellCommandExecutor.execute(Shell.java:789)
at org.apache.hadoop.yarn.server.nodemanager.LinuxContainerExecutor.launchContainer(LinuxContainerExecutor.java:399)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:302)
at org.apache.hadoop.yarn.server.nodemanager.containermanager.launcher.ContainerLaunch.call(ContainerLaunch.java:82)
at java.util.concurrent.FutureTask.run(FutureTask.java:266)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Shell output: main : command provided 1
main : run as user is userabc
main : requested yarn user is userabc
Writing to tmp file /data/1/yarn/nm/nmPrivate/application_1561070366427_23261/container_e68_1561070366427_23261_01_000004/container_e68_1561070366427_23261_01_000004.pid.tmp