Как заменить значение в определенном индексе в каждой строке на соответствующее значение в массиве numpy - PullRequest
2 голосов
/ 22 июня 2019

Мой фрейм данных выглядит следующим образом:

     datetime1 datetime2 datetime3 datetime4
id                                      
1    5          6         5         5   
2    7          2         3         5  
3    4          2         3         2 
4    6          4         4         7 
5    7          3         8         9 

, и у меня есть такой массив значений:

index_arr = [3, 2, 0, 1, 2]

Этот массив значений ссылается на индекс в каждой строке, соответственно, чтоЯ хочу заменить.Значения, которые я хочу использовать при замене, находятся в другом массиве:

replace_arr = [14, 12, 23, 17, 15]

, чтобы обновленный фрейм данных выглядел следующим образом:

     datetime1 datetime2 datetime3 datetime4
id                                      
1    5          6         5         14   
2    7          2         12        5  
3    23         2         3         2 
4    6          17        4         7 
5    7          3         15        9 

Как лучше всего поступитьделать эту замену быстро?Я пытался использовать enumerate и iterrows, но не смог заставить работать синтаксис.Буду признателен за любую помощь - спасибо

Ответы [ 3 ]

3 голосов
/ 22 июня 2019

Вот один способ с np.put_along_axis -

In [50]: df
Out[50]: 
   datetime1  datetime2  datetime3  datetime4
1          5          6          5          5
2          7          2          3          5
3          4          2          3          2
4          6          4          4          7
5          7          3          8          9

In [51]: index_arr = np.array([3, 2, 0 ,1 ,2])

In [52]: replace_arr = np.array([14, 12, 23, 17 ,15])

In [53]: np.put_along_axis(df.to_numpy(),index_arr[:,None],replace_arr[:,None],axis=1)

In [54]: df
Out[54]: 
   datetime1  datetime2  datetime3  datetime4
1          5          6          5         14
2          7          2         12          5
3         23          2          3          2
4          6         17          4          7
5          7          3         15          9
2 голосов
/ 22 июня 2019

В конечном итоге использовать .iat

for x, y ,z in zip(np.arange(len(df)),index_arr ,replace_arr ):
    df.iat[x,y]=z

df
Out[657]: 
    datetime1  datetime2  datetime3  datetime4
id                                            
1           5          6          5         14
2           7          2         12          5
3          23          2          3          2
4           6         17          4          7
5           7          3         15          9
2 голосов
/ 22 июня 2019

IIUC, вы можете просто присвоить .values (или. to_numpy(copy=False)):

# <= 0.23
df.values[np.arange(len(df)), index_arr] = replace_arr
# 0.24+
df.to_numpy(copy=False)[np.arange(len(df)), index_arr] = replace_arr
df

    datetime1  datetime2  datetime3  datetime4
id                                            
1           5          6          5         14
2           7          2         12          5
3          23          2          3          2
4           6         17          4          7
5           7          3         15          9
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...