Я ссылаюсь на * Quasi-Newton (https://en.wikipedia.org/wiki/Quasi-Newton_method) toolbox * scipy.optimize.newton_krylov, который является средством поиска корней, не обязательно минимизатором * https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.optimize.newton_krylov.html
scipy.optimize.newton_krylov Я сталкиваюсь с подобной ошибкой:
Мой код выглядит следующим образом
def eval_with_power(input_path):
pkl_ids = os.listdir(input_path)
N = len(pkl_ids)
x0 = np.ones(N)
x_star = newton_krylov(F, x0, iter=None, rdiff=None, method='lgmres', inner_maxiter=20, inner_M=None, outer_k=10, verbose=False, maxiter=None, f_tol=None, f_rtol=None, x_tol=None, x_rtol=None, tol_norm=None, line_search='armijo', callback=None)
return x_star
# F returns a scalar, yet for sure it can also return np.arrary([.]) but same error
def F(x):
return DetectionBenchmark.compute_aps_arr_from_positive_cache_with_power(input_path, x)['nmsth_0.3'][0.5]['mean_max_f1']
if __name__ == '__main__':
input_path = '...'
x_star = eval_with_power(input_path)
print("The optimal powers are ", x_star, ", respectively.")
print("The optimal F score is ", F(x_star))
Моя ошибка выглядит следующим образом.
python eval_with_power.py
Traceback (most recent call last):
File "eval_with_power.py", line 23, in <module>
x_star = eval_with_power(input_path)
File "eval_with_power.py", line 14, in eval_with_power
x_rtol=None, tol_norm=None, line_search='armijo', callback=None)
File "<string>", line 8, in newton_krylov
File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/scipy/optimize/nonlin.py", line 310, in nonlin_solve
dx = -jacobian.solve(Fx, tol=tol)
File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/scipy/optimize/nonlin.py", line 1465, in solve
sol, info = self.method(self.op, rhs, tol=tol, **self.method_kw)
File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/scipy/sparse/linalg/isolve/lgmres.py", line 125, in lgmres
A,M,x,b,postprocess = make_system(A,M,x0,b)
File "/home/ubuntu/anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/scipy/sparse/linalg/isolve/utils.py", line 69, in make_system
raise ValueError('expected square matrix, but got shape=%s' % (A.shape,))
ValueError: expected square matrix, but got shape=(1, 1705)
Место возникновения ошибки:
34 def make_system(A, M, x0, b):
35 """Make a linear system Ax=b
36
37 Parameters
38 ----------
39 A : LinearOperator
40 sparse or dense matrix (or any valid input to aslinearoperator)
41 M : {LinearOperator, Nones}
42 preconditioner
43 sparse or dense matrix (or any valid input to aslinearoperator)
44 x0 : {array_like, None}
45 initial guess to iterative method
46 b : array_like
47 right hand side
48
49 Returns
50 -------
51 (A, M, x, b, postprocess)
52 A : LinearOperator
53 matrix of the linear system
54 M : LinearOperator
55 preconditioner
56 x : rank 1 ndarray
57 initial guess
58 b : rank 1 ndarray
59 right hand side
60 postprocess : function
61 converts the solution vector to the appropriate
62 type and dimensions (e.g. (N,1) matrix)
63
64 """
65 A_ = A
66 A = aslinearoperator(A)
67 ipdb.set_trace()
68 if A.shape[0] != A.shape[1]:
69 raise ValueError('expected square matrix, but got shape=%s' % (A.shape,))
70
Как указывалось в другом аналогичном вопросе, «метод Крылова требует, чтобы первый аргумент (функция F (x) в вашем случае) был квадратной матрицей» ( Сципи Ньютон Крылов ожидает квадратную матрицу), но можно мне спросить почему?
Есть указатель?