Как применить линейную регрессию коротких временных рядов для большого временного ряда DataFrame - PullRequest
2 голосов
/ 06 июля 2019

У меня есть большой набор данных временных рядов, охватывающий несколько лет с ежедневными ставками.Я пытаюсь добавить два дополнительных столбца, которые включают в себя пересечение Y и коэффициент х или наклона на основе предыдущих 10 дней ставки.

В Excel я использую функцию linest для вычисления пересечения Y и коэффициента x или наклона.

Я хотел бы повторить это в Python.

Я включил пример кода для этого вопроса.

import pandas as pd
import numpy as np
from datetime import datetime

date_rng = pd.date_range(start='7/1/2018', end='08/31/2018', freq='D')

df = pd.DataFrame(date_rng, columns=['date'])
df['data'] = np.random.randint(76, 100, size=(len(date_rng)))

df['datetime'] = pd.to_datetime(df['date'])
df = df.set_index('datetime')
df.drop(['date'], axis=1, inplace=True)

Я ожидаю увидеть следующие результаты

datetime    data    Slope   Intercept
1/07/2018   93  NaN NaN
2/07/2018   91  NaN NaN
3/07/2018   76  NaN NaN
5/07/2018   78  NaN NaN
6/07/2018   86  NaN NaN
7/07/2018   94  NaN NaN
8/07/2018   97  NaN NaN
9/07/2018   97  NaN NaN
10/07/2018  96  1.303030303 81.93333333
11/07/2018  82  1.175757576 81.53333333
12/07/2018  95  1.757575758 78.73333333
13/07/2018  95  1.290909091 83.2
14/07/2018  81  0.296969697 88.46666667
15/07/2018  84  -0.842424242    95.33333333
16/07/2018  77  -1.903030303    100.2666667
17/07/2018  78  -2.266666667    100.6666667

1 Ответ

0 голосов
/ 06 июля 2019

Как подсказывает @alkasm, вы можете использовать функцию Pandas rolling.В открывшемся окне вы можете apply Numpy's linalg.lstsq.

A = np.vstack([ np.arange(10), np.ones(len(x))]).T

df['slope'] = df['data'].rolling(10).apply(lambda y: np.linalg.lstsq(A, y)[0][0])
df['intercept'] = df['data'].rolling(10).apply(lambda y: np.linalg.lstsq(A, y)[0][1])

Для визуализации результата вы можете использовать matplotlib

import matplotlib.pyplot as plt 

pd.plotting.register_matplotlib_converters()

plt.plot(df.index, df.data)
for i in range(0, len(df) - 10 , 10):
    m, c = df.iloc[10 + i][['slope', 'intercept']]
    plt.plot([df.index[0 + i], df.index[10 + i]], [c, c + 10 * m])

plt.show()

enter image description here

...