Может быть возможно.
julia-1.2> for f in [sin, cos, tan]
println(Base.doc(f))
end
```
sin(x)
```
Compute sine of `x`, where `x` is in radians.
```
sin(A::AbstractMatrix)
```
Compute the matrix sine of a square matrix `A`.
If `A` is symmetric or Hermitian, its eigendecomposition ([`eigen`](@ref)) is used to compute the sine. Otherwise, the sine is determined by calling [`exp`](@ref).
# Examples
```jldoctest
julia> sin(fill(1.0, (2,2)))
2×2 Array{Float64,2}:
0.454649 0.454649
0.454649 0.454649
```
```
cos(x)
```
Compute cosine of `x`, where `x` is in radians.
```
cos(A::AbstractMatrix)
```
Compute the matrix cosine of a square matrix `A`.
If `A` is symmetric or Hermitian, its eigendecomposition ([`eigen`](@ref)) is used to compute the cosine. Otherwise, the cosine is determined by calling [`exp`](@ref).
# Examples
```jldoctest
julia> cos(fill(1.0, (2,2)))
2×2 Array{Float64,2}:
0.291927 -0.708073
-0.708073 0.291927
```
```
tan(x)
```
Compute tangent of `x`, where `x` is in radians.
```
tan(A::AbstractMatrix)
```
Compute the matrix tangent of a square matrix `A`.
If `A` is symmetric or Hermitian, its eigendecomposition ([`eigen`](@ref)) is used to compute the tangent. Otherwise, the tangent is determined by calling [`exp`](@ref).
# Examples
```jldoctest
julia> tan(fill(1.0, (2,2)))
2×2 Array{Float64,2}:
-1.09252 -1.09252
-1.09252 -1.09252
```
С Юлией вы можете прочитать код для всего, поэтому несколько часов просмотра источника должны привести к просветлению.