Это простая проблема, которую я не могу найти элегантного решения. Я пытаюсь выбрать строки фрейма данных, где два столбца образуют пару из отдельного списка.
Например:
import pandas as pd
df = pd.DataFrame({'a': range(8), 'b': range(8), 'c': list('zyxwvuts')})
pairs = [(4, 4), (5, 6), (6, 6), (7, 9)]
# The data has an arbitrary number of columns, but I just want
# to match 'a' and 'b'
df
a b c
0 0 0 z
1 1 1 y
2 2 2 x
3 3 3 w
4 4 4 v
5 5 5 u
6 6 6 t
7 7 7 s
В этом примере мой список pairs
содержит комбинацию df.a
и df.b
в строках 4 и 6. Я хотел бы получить простой способ получить фрейм данных, заданный df.iloc[[4, 6], :]
.
Есть ли pandas
или numpy
способ сделать это без явного зацикливания на pairs
?
Сравнение ответов
Решение, использующее вещание, является как чистым, так и быстрым, а также очень хорошим масштабированием.
def with_set_index(df, pairs):
return df.set_index(['a','b']).loc[pairs].dropna()
def with_tuple_isin(df, pairs):
return df[df[['a','b']].apply(tuple,1).isin(pairs)]
def with_array_views(df, pairs):
def view1D(a, b): # a, b are arrays
a = np.ascontiguousarray(a)
b = np.ascontiguousarray(b)
void_dt = np.dtype((np.void, a.dtype.itemsize * a.shape[1]))
return a.view(void_dt).ravel(), b.view(void_dt).ravel()
A, B = view1D(df[['a','b']].values, np.asarray(pairs))
return df[np.isin(A, B)]
def with_broadcasting(df, pairs):
return df[(df[['a','b']].values[:,None] == pairs).all(2).any(1)]
%timeit with_set_index(df, pairs)
# 7.35 ms ± 119 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit with_tuple_isin(df, pairs)
# 1.89 ms ± 24.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit with_array_views(df, pairs)
# 917 µs ± 17.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit with_broadcasting(df, pairs)
# 879 µs ± 8.85 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)