Давайте создадим модель и сохраним ее состояние.
class Model1(nn.Module):
def __init__(self):
super(Model1, self).__init__()
self.encoder = nn.LSTM(100, 50)
def forward(self):
pass
model1 = Model1()
torch.save(model1.state_dict(), 'filename.pt') # saving model
Затем создайте вторую модель, которая имеет несколько слоев, общих для первой модели. Загрузите состояния первой модели и загрузите ее в общие слои второй модели.
class Model2(nn.Module):
def __init__(self):
super(Model2, self).__init__()
self.encoder = nn.LSTM(100, 50)
self.linear = nn.Linear(50, 200)
def forward(self):
pass
model1_dict = torch.load('filename.pt')
model2 = Model2()
model2_dict = model2.state_dict()
# 1. filter out unnecessary keys
filtered_dict = {k: v for k, v in model1_dict.items() if k in model2_dict}
# 2. overwrite entries in the existing state dict
model2_dict.update(filtered_dict)
# 3. load the new state dict
model2.load_state_dict(model2_dict)