Я ищу способ агрегирования (в пандах) подмножества значений, основанных на конкретном разделе, эквивалентном
select table.*,
sum(income) over (order by id, num_yyyymm rows between 3 preceding and 1 preceding) as prev_income_3,
sum(income) over (order by id, num_yyyymm rows between 1 following and 3 following) as next_income_3
from table order by a.id_customer, num_yyyymm;
Я пробовал использовать следующее решение, но у него есть некоторые проблемы: 1)Требуются целые годы 2) Я должен объединить все результаты в конце
for x, y in df.groupby(['id_customer']):
print(y[['num_yyyymm', 'income']])
y['next3'] = y['income'].iloc[::-1].rolling(3).sum()
print(y[['num_yyyymm', 'income', 'next3']])
break
Результаты:
num_yyyymm income next3
0 201501 0.00 0.00
1 201502 0.00 0.00
2 201503 0.00 0.00
3 201504 0.00 0.00
4 201505 0.00 0.00
5 201506 0.00 0.00
6 201507 0.00 0.00
7 201508 0.00 0.00
8 201509 0.00 0.00
9 201510 0.00 0.00
10 201511 0.00 0.00
11 201512 0.00 0.00
12 201601 0.00 0.00
13 201602 0.00 0.00
14 201603 0.00 0.00
15 201604 0.00 0.00
16 201605 0.00 0.00
17 201606 0.00 0.00
18 201607 0.00 0.00
19 201608 0.00 0.00
20 201609 0.00 1522.07
21 201610 0.00 1522.07
22 201611 0.00 1522.07
23 201612 1522.07 0.00
24 201701 0.00 -0.00
25 201702 0.00 1.52
26 201703 0.00 1522.07
27 201704 0.00 1522.07
28 201705 1.52 1520.55
29 201706 1520.55 0.00
30 201707 0.00 NaN
31 201708 0.00 NaN
32 201709 0.00 NaN
У кого-нибудь есть альтернативное решение?