Ошибка версии Python в Jupyter Google DataProc - PullRequest
2 голосов
/ 17 апреля 2019

Я создал кластер DataProc с инициализацией Jupyter. Версия изображения, которую я использовал - 1.4. Я использую ssh как для основного, так и для рабочего узлов, и запускаю python --version, и оба показывают Python 3.6.5 :: Anaconda, Inc..

Однако, когда я пытаюсь запустить пример из Google: Чтение и запись данных из BigQuery с помощью Jupyter (ядро PySpark) выдает следующую ошибку:

Py4JJavaError                             Traceback (most recent call last)
<ipython-input-13-1cf15cbebfd5> in <module>
     55 
     56 # Display 10 results.
---> 57 pprint.pprint(word_counts.take(10))
     58 
     59 

/usr/lib/spark/python/pyspark/rdd.py in take(self, num)
   1358 
   1359             p = range(partsScanned, min(partsScanned + numPartsToTry, totalParts))
-> 1360             res = self.context.runJob(self, takeUpToNumLeft, p)
   1361 
   1362             items += res

/usr/lib/spark/python/pyspark/context.py in runJob(self, rdd, partitionFunc, partitions, allowLocal)
   1049         # SparkContext#runJob.
   1050         mappedRDD = rdd.mapPartitions(partitionFunc)
-> 1051         sock_info = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions)
   1052         return list(_load_from_socket(sock_info, mappedRDD._jrdd_deserializer))
   1053 

/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args)
   1255         answer = self.gateway_client.send_command(command)
   1256         return_value = get_return_value(
-> 1257             answer, self.gateway_client, self.target_id, self.name)
   1258 
   1259         for temp_arg in temp_args:

/usr/lib/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
     61     def deco(*a, **kw):
     62         try:
---> 63             return f(*a, **kw)
     64         except py4j.protocol.Py4JJavaError as e:
     65             s = e.java_exception.toString()

/usr/lib/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    326                 raise Py4JJavaError(
    327                     "An error occurred while calling {0}{1}{2}.\n".
--> 328                     format(target_id, ".", name), value)
    329             else:
    330                 raise Py4JError(

Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.runJob.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 24.0 failed 4 times, most recent failure: Lost task 0.3 in stage 24.0 (TID 563, test-1-w-0.c.abc.internal, executor 3): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/worker.py", line 262, in main
    ("%d.%d" % sys.version_info[:2], version))
Exception: Python in worker has different version 2.7 than that in driver 3.6, PySpark cannot run with different minor versions.Please check environment variables PYSPARK_PYTHON and PYSPARK_DRIVER_PYTHON are correctly set.

    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:588)
    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$GroupedIterator.fill(Iterator.scala:1124)
    at scala.collection.Iterator$GroupedIterator.hasNext(Iterator.scala:1130)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
    at org.apache.spark.scheduler.Task.run(Task.scala:121)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1888)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1876)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1875)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1875)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2109)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2058)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2047)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
    at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:153)
    at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
    at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
    at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.api.python.PythonException: Traceback (most recent call last):
  File "/usr/lib/spark/python/lib/pyspark.zip/pyspark/worker.py", line 262, in main
    ("%d.%d" % sys.version_info[:2], version))
Exception: Python in worker has different version 2.7 than that in driver 3.6, PySpark cannot run with different minor versions.Please check environment variables PYSPARK_PYTHON and PYSPARK_DRIVER_PYTHON are correctly set.

    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:452)
    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:588)
    at org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:571)
    at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:406)
    at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
    at scala.collection.Iterator$GroupedIterator.fill(Iterator.scala:1124)
    at scala.collection.Iterator$GroupedIterator.hasNext(Iterator.scala:1130)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
    at org.apache.spark.scheduler.Task.run(Task.scala:121)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:402)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:408)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more

Я не понимаю, почему может произойти ошибка версии Python master-worker. Кроме того, когда я отправляю это задание из локальной командной строки, оно работает без проблем. Любая помощь или предложение приветствуется.

1 Ответ

2 голосов
/ 17 апреля 2019

Описанная проблема должна появляться только при использовании действий инициализации, которые изначально были написаны для Dataproc 1.2 или более ранней версии. При использовании Dataproc image-version 1.3 или новее вы должны использовать Необязательные компоненты Dataproc для установки Juptyer вместо действия инициализации; этот подход будет более надежным, а также обеспечит правильность всех соответствующих настроек версии во всем кластере:

gcloud dataproc clusters create cluster-name \
  --optional-components=JUPYTER \
  --image-version=1.4 \
  ... other flags
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...