Приложение Spark в режиме клиента - Ошибка инициализации SparkContext - PullRequest
1 голос
/ 12 марта 2019

Я новичок в области данных Hadoop, Spark и Big, и мне удалось настроить простой кластер Hadoop.

Версии:

  • Версия Hadoop: 2.7.0
  • Версия Spark с hadoop: spark-2.3.3-bin-hadoop2.7

ОС: Windows 10

Примечание: Я установил папку bin из папки SPARK_HOME, используя папку bin из репозитория https://github.com/s911415/apache-hadoop-3.1.0-winutils

Конфигурации Hadoop:

ядро-site.xml

<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://localhost:9000</value>
    </property>
</configuration>

HDFS-site.xml

<configuration>
 <property>
    <name>dfs.replication</name>
    <value>1</value>
  </property>
  <property>
    <name>dfs.namenode.name.dir</name>
    <value>file:///C:/hadoop-2.7.0/namenode</value>
  </property>
  <property>
    <name>dfs.datanode.data.dir</name>
    <value>file:///C:/hadoop-2.7.0/datanode</value>
  </property>
</configuration>

mapred-site.xml

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
</configuration>

пряжа site.xml

<configuration>

<!-- Site specific YARN configuration properties -->
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>

    <property>
        <name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>  
        <value>org.apache.hadoop.mapred.ShuffleHandler</value>
    </property>

    <property>
        <name>yarn.nodemanager.pmem-check-enabled</name>
        <value>false</value>
    </property>

    <property>
        <name>yarn.nodemanager.vmem-check-enabled</name>
        <value>false</value>
    </property>
</configuration>

Я выполнил следующие шаги для инициализации и запуска кластера:

  1. Выполнить команду hdfs namenode -format для инициализации namenode dir
  2. Выполнить start-dfs.cmd, чтобы запустить среду HDFS
  3. Выполнить start-yarn.cmd, чтобы запустить YARN manager

Я могу проверить следующие порты:

Как мне запустить в режиме клиента (чтобы иметь возможность выполнять scala-код в spark shell)?

я должен был запустить spark-shell.cmd --master yarn --deploy-mode client --driver-memory 1g --executor-memory 1g --executor-cores 1 в командной строке, но выбрасывается это исключение:

PS C:\Users\razvan.parautiu> spark-shell.cmd --master yarn --deploy-mode client --driver-memory 1g --executor-memory 1g --executor-cores 1
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel).
2019-03-12 16:29:20 WARN  Client:66 - Neither spark.yarn.jars nor spark.yarn.archive is set, falling back to uploading libraries under SPARK_HOME.
2019-03-12 16:29:40 ERROR SparkContext:91 - Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
        at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:89)
        at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:63)
        at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:164)
        at org.apache.spark.SparkContext.<init>(SparkContext.scala:500)
        at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2493)
        at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:934)
        at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:925)
        at scala.Option.getOrElse(Option.scala:121)
        at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:925)
        at org.apache.spark.repl.Main$.createSparkSession(Main.scala:103)
        at $line3.$read$$iw$$iw.<init>(<console>:15)
        at $line3.$read$$iw.<init>(<console>:43)
        at $line3.$read.<init>(<console>:45)
        at $line3.$read$.<init>(<console>:49)
        at $line3.$read$.<clinit>(<console>)
        at $line3.$eval$.$print$lzycompute(<console>:7)
        at $line3.$eval$.$print(<console>:6)
        at $line3.$eval.$print(<console>)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:786)
        at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:1047)
        at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:638)
        at scala.tools.nsc.interpreter.IMain$WrappedRequest$$anonfun$loadAndRunReq$1.apply(IMain.scala:637)
        at scala.reflect.internal.util.ScalaClassLoader$class.asContext(ScalaClassLoader.scala:31)
        at scala.reflect.internal.util.AbstractFileClassLoader.asContext(AbstractFileClassLoader.scala:19)
        at scala.tools.nsc.interpreter.IMain$WrappedRequest.loadAndRunReq(IMain.scala:637)
        at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:569)
        at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565)
        at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:807)
        at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:681)
        at scala.tools.nsc.interpreter.ILoop.processLine(ILoop.scala:395)
        at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.apply(SparkILoop.scala:79)
        at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1$$anonfun$apply$mcV$sp$2.apply(SparkILoop.scala:79)
        at scala.collection.immutable.List.foreach(List.scala:381)
        at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply$mcV$sp(SparkILoop.scala:79)
        at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79)
        at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1$$anonfun$apply$mcV$sp$1.apply(SparkILoop.scala:79)
        at scala.tools.nsc.interpreter.ILoop.savingReplayStack(ILoop.scala:91)
        at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply$mcV$sp(SparkILoop.scala:78)
        at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78)
        at org.apache.spark.repl.SparkILoop$$anonfun$initializeSpark$1.apply(SparkILoop.scala:78)
        at scala.tools.nsc.interpreter.IMain.beQuietDuring(IMain.scala:214)
        at org.apache.spark.repl.SparkILoop.initializeSpark(SparkILoop.scala:77)
        at org.apache.spark.repl.SparkILoop.loadFiles(SparkILoop.scala:110)
        at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:920)
        at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
        at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:909)
        at scala.reflect.internal.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:97)
        at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:909)
        at org.apache.spark.repl.Main$.doMain(Main.scala:76)
        at org.apache.spark.repl.Main$.main(Main.scala:56)
        at org.apache.spark.repl.Main.main(Main.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
        at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:894)
        at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:198)
        at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:228)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:137)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
2019-03-12 16:29:40 WARN  YarnSchedulerBackend$YarnSchedulerEndpoint:66 - Attempted to request executors before the AM has registered!
2019-03-12 16:29:40 WARN  MetricsSystem:66 - Stopping a MetricsSystem that is not running
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
  at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:89)
  at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:63)
  at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:164)
  at org.apache.spark.SparkContext.<init>(SparkContext.scala:500)
  at org.apache.spark.SparkContext$.getOrCreate(SparkContext.scala:2493)
  at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:934)
  at org.apache.spark.sql.SparkSession$Builder$$anonfun$7.apply(SparkSession.scala:925)
  at scala.Option.getOrElse(Option.scala:121)
  at org.apache.spark.sql.SparkSession$Builder.getOrCreate(SparkSession.scala:925)
  at org.apache.spark.repl.Main$.createSparkSession(Main.scala:103)
  ... 55 elided
<console>:14: error: not found: value spark
       import spark.implicits._
              ^
<console>:14: error: not found: value spark
       import spark.sql
              ^
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 2.3.3
      /_/

Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_202)
Type in expressions to have them evaluated.
Type :help for more information.

scala>

В StackOverflow есть похожие вопросы, но с другими решениями для других версий spark и hadoop

...