Вам придется перенести все данные в драйвер, что немного высосет вашу память: (...
Решением может быть разделение вашего информационного кадра и распечатывание фрагментов по частям в драйвере. Конечно, это зависит от структуры самих данных, это будет выглядеть так:
long count = df.count();
long inc = count / 10;
for (long i = 0; i < count; i += inc) {
Dataset<Row> filteredDf =
df.where("id>=" + i + " AND id<" + (i + inc));
List<Row> rows = filteredDf.collectAsList();
for (Row r : rows) {
System.out.printf("%d: %s\n", r.getAs(0), r.getString(1));
}
}
Я разделил набор данных на 10, но я знаю, что мои идентификаторы от 1 до 100 ...
Полный пример может быть:
package net.jgp.books.sparkWithJava.ch20.lab900_splitting_dataframe;
import java.util.ArrayList;
import java.util.List;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
/**
* Splitting a dataframe to bring it back to the driver for local
* processing.
*
* @author jgp
*/
public class SplittingDataframeApp {
/**
* main() is your entry point to the application.
*
* @param args
*/
public static void main(String[] args) {
SplittingDataframeApp app = new SplittingDataframeApp();
app.start();
}
/**
* The processing code.
*/
private void start() {
// Creates a session on a local master
SparkSession spark = SparkSession.builder()
.appName("Splitting a dataframe to collect it")
.master("local")
.getOrCreate();
Dataset<Row> df = createRandomDataframe(spark);
df = df.cache();
df.show();
long count = df.count();
long inc = count / 10;
for (long i = 0; i < count; i += inc) {
Dataset<Row> filteredDf =
df.where("id>=" + i + " AND id<" + (i + inc));
List<Row> rows = filteredDf.collectAsList();
for (Row r : rows) {
System.out.printf("%d: %s\n", r.getAs(0), r.getString(1));
}
}
}
private static Dataset<Row> createRandomDataframe(SparkSession spark) {
StructType schema = DataTypes.createStructType(new StructField[] {
DataTypes.createStructField(
"id",
DataTypes.IntegerType,
false),
DataTypes.createStructField(
"value",
DataTypes.StringType,
false) });
List<Row> rows = new ArrayList<Row>();
for (int i = 0; i < 100; i++) {
rows.add(RowFactory.create(i, "Row #" + i));
}
Dataset<Row> df = spark.createDataFrame(rows, schema);
return df;
}
}
Как вы думаете, это может помочь?
Это не так элегантно, как сохранение его в базе данных, но позволяет избежать дополнительного компонента в вашей архитектуре. Этот код не очень общий, я не уверен, что вы можете сделать его общим в текущей версии Spark.