Имея этот код:
typedef struct {
struct {
uint64_t key;
uint64_t mac;
uint64_t orig;
uint64_t body;
} length;
} secure_head_t;
typedef char *secure_t;
secure_t *secure_alloc(uint64_t key, uint64_t mac, uint64_t orig, uint64_t body) {
secure_t *cryptex = (secure_t*)malloc(sizeof(secure_head_t) + key + mac + body);
secure_head_t *head = (secure_head_t *)cryptex;
head->length.key = key;
head->length.mac = mac;
head->length.orig = orig;
head->length.body = body;
return cryptex;
}
Я хочу конвертировать secure_t
в char *
,
что-то вроде: char *str = secure_t *text;
Я пробовал это:
secure_head_t *head = (secure_head_t *)securetext;
char frame[sizeof(secure_head_t)];
memcpy(frame, &head, sizeof(secure_head_t));
Но это не всегда работает, а иногда не может скопировать. Пожалуйста, покажите, как я должен скопировать это правильно. Все, что я хочу, это преобразовать secure_t*
в char*
и обратно из char*
в secure_t*
.
UPDATE:
Я хочу превратить блок (и) данных, зашифрованных с помощью ECDHA с использованием OpenSSL 1.0.2, в двоичный буфер для последующей расшифровки. Минимальный размер блока данных составляет 1 КБ, а максимальный - 1 МБ. Я могу контролировать весь процесс, я использую его для изучения асимметричного и симметричного шифрования.
Вот подробный код:
void Encryption(UnicodeString PlainText)
{
srand(time(NULL));
int tlen;
size_t olen;
EC_KEY *key = NULL;
secure_t *ciphered = NULL;
char *hex_pub = NULL, *hex_priv = NULL;
char *text = NULL;
tlen = PlainText.Length();
text = new char [tlen];
WideCharToMultiByte(CP_ACP, 0, PlainText.c_str(), wcslen(PlainText.c_str())+1, text , sizeof(char)*tlen, NULL, NULL);
// Generate a key for our theoretical user.
if (!(key = ecies_key_create()))
{
printf("Key creation failed.\n");
}
// Since we'll store the keys as hex values in reali life, extract the appropriate hex values and release the original key structure.
if (!(hex_pub = ecies_key_public_get_hex(key)) || !(hex_priv = ecies_key_private_get_hex(key)))
{
printf("Serialization of the key to a pair of hex strings failed.\n");
}
//saving keys
KeyPriv = AnsiString(hex_priv);
KeyPub = AnsiString(hex_pub);
if (!(ciphered = ecies_encrypt(hex_pub, text, tlen)))
{
printf("The encryption process failed!\n");
}
secure_head_t *head = (secure_head_t *)ciphered;
char frame[sizeof(secure_head_t )];
memcpy(frame, &head, sizeof(secure_head_t *));
CipherText = frame;
}
void Decrypt(AnsiString CipherText)
{
size_t olen;
EC_KEY *key = NULL;
secure_t *ciphered = NULL;
char *hex_pub = NULL, *hex_priv = NULL;
unsigned char *text = NULL, *copy = NULL, *original = NULL;
secure_head_t *head = new secure_head_t;
memcpy(&head, CipherText.c_str(), sizeof(char)*CipherText.Length());
secure_t *cryptex = (secure_t*)head;
hex_priv = KeyPriv.c_str();
if(!(original = ecies_decrypt(hex_priv, cryptex, &olen)))
{
printf("The decryption process failed!\n");
}
PlainText = AnsiString((char*)original);
}
Приведенный выше код работает, но иногда нет, и я не отправляю строки длиной <25. </p>
Другой код можно увидеть ниже, кроме кода OpenSSL
ecies.h
------------------------------------------------------------------------------
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
//#include <inttypes.h>
#include<stdint.h>
#include <openssl/ssl.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/stack.h>
#define ECIES_CURVE NID_secp521r1
#define ECIES_CIPHER EVP_aes_256_cbc()
#define ECIES_HASHER EVP_sha512()
//EC_GROUP *eliptic = NULL;
typedef struct {
struct {
uint64_t key;
uint64_t mac;
uint64_t orig;
uint64_t body;
} length;
} secure_head_t;
typedef char* secure_t;
void secure_free(secure_t *cryptex);
void * secure_key_data(secure_t *cryptex);
void * secure_mac_data(secure_t *cryptex);
void * secure_body_data(secure_t *cryptex);
uint64_t secure_key_length(secure_t *cryptex);
uint64_t secure_mac_length(secure_t *cryptex);
uint64_t secure_body_length(secure_t *cryptex);
uint64_t secure_orig_length(secure_t *cryptex);
uint64_t secure_total_length(secure_t *cryptex);
secure_t * secure_alloc(uint64_t key, uint64_t mac, uint64_t orig, uint64_t body);
void ecies_group_init(void);
void ecies_group_free(void);
EC_GROUP * ecies_group(void);
void ecies_key_free(EC_KEY *key);
EC_KEY * ecies_key_create(void);
EC_KEY * ecies_key_create_public_hex(char *hex);
EC_KEY * ecies_key_create_private_hex(char *hex);
EC_KEY * ecies_key_create_public_octets(unsigned char *octets, size_t length);
char * ecies_key_public_get_hex(EC_KEY *key);
char * ecies_key_private_get_hex(EC_KEY *key);
secure_t * ecies_encrypt(char *key, unsigned char *data, size_t length);
unsigned char * ecies_decrypt(char *key, secure_t *cryptex, size_t *length);
------------------------------------------------------------------------------
**secure.c**
------------------------------------------------------------------------------
#include "ecies.h"
uint64_t secure_key_length(secure_t *cryptex) {
secure_head_t *head = (secure_head_t *)cryptex;
return head->length.key;
}
uint64_t secure_mac_length(secure_t *cryptex) {
secure_head_t *head = (secure_head_t *)cryptex;
return head->length.mac;
}
uint64_t secure_body_length(secure_t *cryptex) {
secure_head_t *head = (secure_head_t *)cryptex;
return head->length.body;
}
uint64_t secure_orig_length(secure_t *cryptex) {
secure_head_t *head = (secure_head_t *)cryptex;
return head->length.orig;
}
uint64_t secure_total_length(secure_t *cryptex) {
secure_head_t *head = (secure_head_t *)cryptex;
return sizeof(secure_head_t) + (head->length.key + head->length.mac +
head->length.body);
}
void * secure_key_data(secure_t *cryptex) {
return (char *)cryptex + sizeof(secure_head_t);
}
void * secure_mac_data(secure_t *cryptex) {
secure_head_t *head = (secure_head_t *)cryptex;
return (char *)cryptex + (sizeof(secure_head_t) + head->length.key);
}
void * secure_body_data(secure_t *cryptex) {
secure_head_t *head = (secure_head_t *)cryptex;
return (char *)cryptex + (sizeof(secure_head_t) + head->length.key +
head->length.mac);
}
secure_t * secure_alloc(uint64_t key, uint64_t mac, uint64_t orig, uint64_t body) {
secure_t *cryptex = (secure_t*)malloc(sizeof(secure_head_t) + key + mac + body);
secure_head_t *head = (secure_head_t *)cryptex;
head->length.key = key;
head->length.mac = mac;
head->length.orig = orig;
head->length.body = body;
return cryptex;
}
void secure_free(secure_t *cryptex) {
free(cryptex);
return;
}
------------------------------------------------------------------------------
ecies.c
-------------------------------------------------------------------------------
#include "ecies.h"
#include <openssl/keys.c>
#include <openssl/secure.c>
/*
void ecies_group_free(void) {
EC_GROUP *group = eliptic;
eliptic = NULL;
if (group) {
EC_GROUP_free(group);
}
return;
} */
void * ecies_key_derivation(const void *input, size_t ilen, void *output,
size_t *olen) {
if (*olen < SHA512_DIGEST_LENGTH) {
return NULL;
}
*olen = SHA512_DIGEST_LENGTH;
return SHA512((unsigned char*)input, ilen, (unsigned char*)output);
}
secure_t * ecies_encrypt(char *key, unsigned char *data, size_t length) {
unsigned char *body;
HMAC_CTX hmac;
int body_length;
secure_t *cryptex;
EVP_CIPHER_CTX cipher;
unsigned int mac_length;
EC_KEY *user, *ephemeral;
size_t envelope_length, block_length, key_length;
unsigned char envelope_key[SHA512_DIGEST_LENGTH], iv[EVP_MAX_IV_LENGTH], block[EVP_MAX_BLOCK_LENGTH];
// Simple sanity check.
if (!key || !data || !length) {
//printf("Invalid parameters passed in.\n");
MessageBox ( NULL,L"Invalid parameters passed in.\n" ,L"Error", MB_OK );
return NULL;
}
// Make sure we are generating enough key material for the symmetric ciphers.
if ((key_length = EVP_CIPHER_key_length(ECIES_CIPHER)) * 2 > SHA512_DIGEST_LENGTH) {
//printf("The key derivation method will not produce enough envelope key material for the chosen ciphers. {envelope = %i / required = %zu}", SHA512_DIGEST_LENGTH / 8,(key_length * 2) / 8);
MessageBox ( NULL,L"The key derivation method will not produce enough envelope key material for the chosen ciphers. " ,L"Error", MB_OK );
return NULL;
}
// Convert the user's public key from hex into a full EC_KEY structure.
if (!(user = ecies_key_create_public_hex(key))) {
//printf("Invalid public key provided.\n");
MessageBox ( NULL,L"Invalid public key provided" ,L"Error", MB_OK );
return NULL;
}
// Create the ephemeral key used specifically for this block of data.
else if (!(ephemeral = ecies_key_create())) {
//printf("An error occurred while trying to generate the ephemeral key.\n");
MessageBox ( NULL,L"An error occurred while trying to generate the ephemeral key" ,L"Error", MB_OK );
EC_KEY_free(user);
return NULL;
}
// Use the intersection of the provided keys to generate the envelope data used by the ciphers below. The ecies_key_derivation() function uses
// SHA 512 to ensure we have a sufficient amount of envelope key material and that the material created is sufficiently secure.
else if (ECDH_compute_key(envelope_key, SHA512_DIGEST_LENGTH, EC_KEY_get0_public_key(user), ephemeral, ecies_key_derivation) !=
SHA512_DIGEST_LENGTH) {
//printf("An error occurred while trying to compute the envelope key. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
MessageBox ( NULL,L"An error occurred while trying to compute the envelope key" ,L"Error", MB_OK );
EC_KEY_free(ephemeral);
EC_KEY_free(user);
return NULL;
}
// Determine the envelope and block lengths so we can allocate a buffer for the result.
else if ((block_length = EVP_CIPHER_block_size(ECIES_CIPHER)) == 0 || block_length > EVP_MAX_BLOCK_LENGTH ||
(envelope_length = EC_POINT_point2oct(EC_KEY_get0_group(ephemeral), EC_KEY_get0_public_key(ephemeral),
POINT_CONVERSION_COMPRESSED, NULL, 0, NULL)) == 0) {
//printf("Invalid block or envelope length. {block = %zu /envelope = %zu}\n", block_length, envelope_length);
MessageBox ( NULL,L"Invalid block or envelope length" ,L"Error", MB_OK );
EC_KEY_free(ephemeral);
EC_KEY_free(user);
return NULL;
}
// We use a conditional to pad the length if the input buffer is notevenly divisible by the block size.
else if (!(cryptex = secure_alloc(envelope_length, EVP_MD_size(ECIES_HASHER), length, length + (length % block_length ? (block_length - (length % block_length)) : 0)))) {
//printf("Unable to allocate a secure_t buffer to hold the encrypted result.\n");
MessageBox ( NULL,L"Unable to allocate a secure_t buffer to hold the encrypted result" ,L"Error", MB_OK );
EC_KEY_free(ephemeral);
EC_KEY_free(user);
return NULL;
}
// Store the public key portion of the ephemeral key.
else if (EC_POINT_point2oct(EC_KEY_get0_group(ephemeral), EC_KEY_get0_public_key(ephemeral), POINT_CONVERSION_COMPRESSED, (unsigned char*)secure_key_data(cryptex), envelope_length, NULL) != envelope_length) {
//printf("An error occurred while trying to record the public portion of the envelope key. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
MessageBox ( NULL,L"An error occurred while trying to record the public portion of the envelope key" ,L"Error", MB_OK );
EC_KEY_free(ephemeral);
EC_KEY_free(user);
secure_free(cryptex);
return NULL;
}
// The envelope key has been stored so we no longer need to keep the keys around.
EC_KEY_free(ephemeral);
EC_KEY_free(user);
// For now we use an empty initialization vector.
memset(iv, 0, EVP_MAX_IV_LENGTH);
// Setup the cipher context, the body length, and store a pointer to the body buffer location.
EVP_CIPHER_CTX_init(&cipher);
body = (unsigned char*)secure_body_data(cryptex);
body_length = secure_body_length(cryptex);
// Initialize the cipher with the envelope key.
if (EVP_EncryptInit_ex(&cipher, ECIES_CIPHER, NULL, envelope_key, iv) != 1 || EVP_CIPHER_CTX_set_padding(&cipher, 0) != 1 || EVP_EncryptUpdate(&cipher, (unsigned char*)body, &body_length, data, length - (length % block_length)) != 1) {
//printf("An error occurred while trying to secure the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
MessageBox ( NULL,L"An error occurred while trying to secure the data using the chosen symmetric cipher." ,L"Error", MB_OK );
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
// Check whether all of the data was encrypted. If they don't match up, we either have a partial block remaining, or an error occurred.
else if (body_length != length) {
// Make sure all that remains is a partial block, and their wasn't an error.
if (length - body_length >= block_length) {
//printf("Unable to secure the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
MessageBox ( NULL,L"Unable to secure the data using the chosen symmetric cipher.." ,L"Error", MB_OK );
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
// Copy the remaining data into our partial block buffer. The memset() call ensures any extra bytes will be zero'ed out.
memset(block, 0, EVP_MAX_BLOCK_LENGTH);
memcpy(block, data + body_length, length - body_length);
// Advance the body pointer to the location of the remaining space, and calculate just how much room is still available.
body += body_length;
if ((body_length = secure_body_length(cryptex) - body_length) < 0) {
//printf("The symmetric cipher overflowed!\n");
MessageBox ( NULL,L"The symmetric cipher overflowed!" ,L"Error", MB_OK );
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
// Pass the final partially filled data block into the cipher as a complete block. The padding will be removed during the decryption process.
else if (EVP_EncryptUpdate(&cipher, body, &body_length, block, block_length) != 1) {
//printf("Unable to secure the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
MessageBox ( NULL,L"Unable to secure the data using the chosen symmetric cipher." ,L"Error", MB_OK );
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
}
// Advance the pointer, then use pointer arithmetic to calculate how much of the body buffer has been used. The complex logic is needed so that we get
// the correct status regardless of whether there was a partial data block.
body += body_length;
if ((body_length = secure_body_length(cryptex) - (body - (unsigned char*)secure_body_data(cryptex))) < 0) {
//printf("The symmetric cipher overflowed!\n");
MessageBox ( NULL,L"The symmetric cipher overflowed!" ,L"Error", MB_OK );
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
else if (EVP_EncryptFinal_ex(&cipher, body, &body_length) != 1) {
//printf("Unable to secure the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
MessageBox ( NULL,L"Unable to secure the data using the chosen symmetric cipher" ,L"Error", MB_OK );
EVP_CIPHER_CTX_cleanup(&cipher);
secure_free(cryptex);
return NULL;
}
EVP_CIPHER_CTX_cleanup(&cipher);
// Generate an authenticated hash which can be used to validate the data during decryption.
HMAC_CTX_init(&hmac);
mac_length = secure_mac_length(cryptex);
// At the moment we are generating the hash using encrypted data. At some point we may want to validate the original text instead.
if (HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL) != 1 || HMAC_Update(&hmac, (unsigned char*)secure_body_data(cryptex), secure_body_length(cryptex))
!= 1 || HMAC_Final(&hmac, (unsigned char*)secure_mac_data(cryptex), &mac_length) != 1) {
//printf("Unable to generate a data authentication code. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
MessageBox ( NULL,L"Unable to generate a data authentication code." ,L"Error", MB_OK );
HMAC_CTX_cleanup(&hmac);
secure_free(cryptex);
return NULL;
}
HMAC_CTX_cleanup(&hmac);
return cryptex;
}
unsigned char * ecies_decrypt(char *key, secure_t *cryptex, size_t *length) {
HMAC_CTX hmac;
size_t key_length;
int output_length;
EVP_CIPHER_CTX cipher;
EC_KEY *user, *ephemeral;
unsigned int mac_length = EVP_MAX_MD_SIZE;
unsigned char envelope_key[SHA512_DIGEST_LENGTH], iv[EVP_MAX_IV_LENGTH], md[EVP_MAX_MD_SIZE], *block, *output;
// Simple sanity check.
if (!key || !cryptex || !length) {
//printf("Invalid parameters passed in.\n");
MessageBox ( NULL,L"Invalid parameters passed in." ,L"Error", MB_OK );
return NULL;
}
// Make sure we are generating enough key material for the symmetric ciphers.
else if ((key_length = EVP_CIPHER_key_length(ECIES_CIPHER)) * 2 > SHA512_DIGEST_LENGTH) {
//printf("The key derivation method will not produce enough envelope key material for the chosen ciphers. {envelope = %i / required = %zu}", SHA512_DIGEST_LENGTH / 8, (key_length * 2) / 8);
MessageBox ( NULL,L"The key derivation method will not produce enough envelope key material for the chosen ciphers" ,L"Error", MB_OK );
return NULL;
}
// Convert the user's public key from hex into a full EC_KEY structure.
else if (!(user = ecies_key_create_private_hex(key))) {
//printf("Invalid private key provided.\n");
MessageBox ( NULL,L"Invalid private key provided" ,L"Error", MB_OK );
return NULL;
}
// Create the ephemeral key used specifically for this block of data.
else if (!(ephemeral =
ecies_key_create_public_octets((unsigned char*)secure_key_data(cryptex), secure_key_length(cryptex)))) {
//printf("An error occurred while trying to recreate the ephemeral key.\n");
MessageBox ( NULL,L"An ssssserror occurred while trying to recreate the ephemeral key" ,L"Error", MB_OK );
EC_KEY_free(user);
return NULL;
}
// Use the intersection of the provided keys to generate the envelope data used by the ciphers below. The ecies_key_derivation() function uses
// SHA 512 to ensure we have a sufficient amount of envelope key material and that the material created is sufficiently secure.
else if (ECDH_compute_key(envelope_key, SHA512_DIGEST_LENGTH, EC_KEY_get0_public_key(ephemeral), user, ecies_key_derivation) != SHA512_DIGEST_LENGTH) {
//printf("An error occurred while trying to compute the envelope key. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
MessageBox ( NULL,L"An error occurred while trying to compute the envelope key." ,L"Error", MB_OK );
EC_KEY_free(ephemeral);
EC_KEY_free(user);
return NULL;
}
// The envelope key material has been extracted, so we no longer need the user and ephemeral keys.
EC_KEY_free(ephemeral);
EC_KEY_free(user);
// Use the authenticated hash of the ciphered data to ensure it was not modified after being encrypted.
HMAC_CTX_init(&hmac);
// At the moment we are generating the hash using encrypted data. At some point we may want to validate the original text instead.
if (HMAC_Init_ex(&hmac, envelope_key + key_length, key_length, ECIES_HASHER, NULL) != 1 || HMAC_Update(&hmac, (unsigned char*)secure_body_data(cryptex),
secure_body_length(cryptex))
!= 1 || HMAC_Final(&hmac, md, &mac_length) != 1) {
//printf("Unable to generate the authentication code needed for validation. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
MessageBox ( NULL,L"Unable to generate the authentication code needed for validation." ,L"Error", MB_OK );
HMAC_CTX_cleanup(&hmac);
return NULL;
}
HMAC_CTX_cleanup(&hmac);
// We can use the generated hash to ensure the encrypted data was not altered after being encrypted.
if (mac_length != secure_mac_length(cryptex) || memcmp(md,
secure_mac_data(cryptex), mac_length)) {
//printf("The authentication code was invalid! The ciphered data has been corrupted!\n");
MessageBox ( NULL,L"The authentication code was invalid! The ciphered data has been corrupted" ,L"Error", MB_OK );
return NULL;
}
// Create a buffer to hold the result.
output_length = secure_body_length(cryptex);
if (!(block = output = (unsigned char*)malloc(output_length + 1))) {
//printf("An error occurred while trying to allocate memory for the decrypted data.\n");
MessageBox ( NULL,L"An error occurred while trying to allocate memory for the decrypted data" ,L"Error", MB_OK );
return NULL;
}
// For now we use an empty initialization vector. We also clear out the result buffer just to be on the safe side.
memset(iv, 0, EVP_MAX_IV_LENGTH);
memset(output, 0, output_length + 1);
EVP_CIPHER_CTX_init(&cipher);
// Decrypt the data using the chosen symmetric cipher.
if (EVP_DecryptInit_ex(&cipher, ECIES_CIPHER, NULL, envelope_key, iv)
!= 1 || EVP_CIPHER_CTX_set_padding(&cipher, 0) != 1 ||
EVP_DecryptUpdate(&cipher, block,
&output_length, (unsigned char*)secure_body_data(cryptex),
secure_body_length(cryptex)) != 1) {
//printf("Unable to decrypt the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
MessageBox ( NULL,L"Unable to decrypt the data using the chosen symmetric cipher." ,L"Error", MB_OK );
EVP_CIPHER_CTX_cleanup(&cipher);
free(output);
return NULL;
}
block += output_length;
if ((output_length = secure_body_length(cryptex) - output_length) != 0)
{
//printf("The symmetric cipher failed to properly decrypt the correct amount of data!\n");
MessageBox ( NULL,L"The symmetric cipher failed to properly decrypt the correct amount of data" ,L"Error", MB_OK );
EVP_CIPHER_CTX_cleanup(&cipher);
free(output);
return NULL;
}
if (EVP_DecryptFinal_ex(&cipher, block, &output_length) != 1) {
//printf("Unable to decrypt the data using the chosen symmetric cipher. {error = %s}\n", ERR_error_string(ERR_get_error(), NULL));
MessageBox ( NULL,L"Unable to decrypt the data using the chosen symmetric cipher." ,L"Error", MB_OK );
EVP_CIPHER_CTX_cleanup(&cipher);
free(output);
return NULL;
}
EVP_CIPHER_CTX_cleanup(&cipher);
*length = secure_orig_length(cryptex);
return output;
}