Я вставил комментарии в код, чтобы объяснить каждый шаг, пока не достигну желаемого результата.
Конечно, нет необходимости создавать все столбцы из приведенного ниже примера, и, вероятно, этот код может быть значительно улучшен, но я думаю, что важно показать вам шаг за шагом и сделать начальный удар, чтобы решить ваш вопрос.
x = sc.parallelize([
[0, None],
[1, 3.],
[2, 7.],
[3, None],
[4, 4.],
[5, 3.],
[6, None],
[7, None],
[8, 5.],
[9, 2.],
[10, None]
])
# Assigned values in columns A and B to facilitate manipulation
x = x.toDF(['A', 'B'])
# Prints initial DF
x.show()
Выход:
+---+----+
| A| B|
+---+----+
| 0|null|
| 1| 3.0|
| 2| 7.0|
| 3|null|
| 4| 4.0|
| 5| 3.0|
| 6|null|
| 7|null|
| 8| 5.0|
| 9| 2.0|
| 10|null|
+---+----+
# Transform null values into "1"
x = x.withColumn('C', when(x.B.isNull(), 1))
x.show()
Выход:
+---+----+----+
| A| B| C|
+---+----+----+
| 0|null| 1|
| 1| 3.0|null|
| 2| 7.0|null|
| 3|null| 1|
| 4| 4.0|null|
| 5| 3.0|null|
| 6|null| 1|
| 7|null| 1|
| 8| 5.0|null|
| 9| 2.0|null|
| 10|null| 1|
+---+----+----+
# Creates a spec that order column A
order_spec = Window().orderBy('A')
# Doing a cumulative sum. See the explanation
# https://stackoverflow.com/questions/56384625/pyspark-cumulative-sum-with-reset-condition
x = x \
.withColumn('tmp', sum((x.C.isNull()).cast('int')).over(order_spec)) \
.withColumn('D', sum(x.C).over(order_spec.partitionBy("tmp"))) \
.drop('tmp')
x.show()
Выход:
+---+----+----+----+
| A| B| C| D|
+---+----+----+----+
| 0|null| 1| 1|
| 1| 3.0|null|null|
| 2| 7.0|null|null|
| 3|null| 1| 1|
| 4| 4.0|null|null|
| 5| 3.0|null|null|
| 6|null| 1| 1|
| 7|null| 1| 2|
| 8|null| 1| 3|
| 9| 5.0|null|null|
| 10| 2.0|null|null|
| 11|null| 1| 1|
+---+----+----+----+
# Put values from column D to one row above and select the desired output values
x = x.withColumn('E', lag(x.D, ).over(order_spec)) \
.select(x.A, x.B, when(col('E').isNotNull(), col('E')).otherwise(0).alias('nan_count'))
x.show()
Выход:
+---+----+---------+
| A| B|nan_count|
+---+----+---------+
| 0|null| 0|
| 1| 3.0| 1|
| 2| 7.0| 0|
| 3|null| 0|
| 4| 4.0| 1|
| 5| 3.0| 0|
| 6|null| 0|
| 7|null| 1|
| 8|null| 2|
| 9| 5.0| 3|
| 10| 2.0| 0|
| 11|null| 0|
+---+----+---------+
Весь код:
from pyspark.shell import sc
from pyspark.sql import Window
from pyspark.sql.functions import lag, when, sum, col
x = sc.parallelize([
[0, None], [1, 3.], [2, 7.], [3, None], [4, 4.],
[5, 3.], [6, None], [7, None], [8, None], [9, 5.], [10, 2.], [11, None]])
x = x.toDF(['A', 'B'])
# Transform null values into "1"
x = x.withColumn('C', when(x.B.isNull(), 1))
# Creates a spec that order column A
order_spec = Window().orderBy('A')
# Doing a cumulative sum with reset condition. See the explanation
# https://stackoverflow.com/questions/56384625/pyspark-cumulative-sum-with-reset-condition
x = x \
.withColumn('tmp', sum((x.C.isNull()).cast('int')).over(order_spec)) \
.withColumn('D', sum(x.C).over(order_spec.partitionBy("tmp"))) \
.drop('tmp')
# Put values from column D to one row above and select the desired output values
x = x.withColumn('E', lag(x.D, ).over(order_spec)) \
.select(x.A, x.B, when(col('E').isNotNull(), col('E')).otherwise(0).alias('nan_count'))
x.show()