Я пишу гауссову функцию свертки, используя cv :: cuda :: Convolution, и вызываю функцию с другими параметрами, чтобы получить разные результаты свертки для использования в другой обработке. Но я получал одинаковые результаты для всех трех вызовов с результатом первого параметра.
Следующая функция Гаусса.
void Gauss_conv(const cv::cuda::GpuMat& src,
cv::cuda::GpuMat& conv,
int gauss_size,
bool convert_to_8bit = true)
{
cv::Mat gauss_kernel;
cv::cuda::GpuMat gf_src, gf_gauss, gf_conv;
std::vector <cv::cuda::GpuMat> gfv_src, gfv_gauss, gfv_conv;
src.convertTo(gf_src, CV_32FC3);
//Split the source image on the GPU
cv::cuda::split(gf_src, gfv_conv);
cv::cuda::split(gf_src, gfv_src);
//Prepare the input image for Gauss filtering
cv::cuda::copyMakeBorder(gf_src, gf_gauss, 0.5 * gauss_size,
0.5 * gauss_size, 0.5 * gauss_size, 0.5 * gauss_size,
cv::BORDER_REPLICATE);
cv::cuda::split(gf_gauss, gfv_gauss);
//Create the Gauss kernel and upload it to the GPU
cv::Ptr < cv::cuda::Convolution> c1 = cv::cuda::createConvolution();
cv::mulTransposed(cv::getGaussianKernel(gauss_size, -1, CV_32FC1),
gauss_kernel, false);
gf_gauss.upload(gauss_kernel);
//Apply Gaussian blur to all channels independently, also compute subtraction image
for (int i = 0; i < src.channels(); i++)
{
c1->convolve(gfv_gauss[i], gf_gauss, gfv_conv[i], true);
}
cv::cuda::merge(gfv_conv, conv);
}
//in main function
cv::Mat srcFloat;
src.convertTo(srcFloat, CV_32FC3);
cv::cuda::GpuMat gpu_src_uchar(src);
cv::cuda::GpuMat gpu_src_float(srcFloat);
cv::cuda::GpuMat conv1, conv2, conv3;
Gauss_conv(gpu_src_uchar, conv1, 131, true); //131
Gauss_conv(gpu_src_uchar, conv2, 531, true); //531
Gauss_conv(gpu_src_uchar, conv3, 1631, true); //1631
Я хочу получить три разных результата свертки в основной функции. Но я получил один и тот же результат (первый результат свертки) для всей свертки в основной функции.
Это изображение, которое я использую для тестирования.